Algebra equation with symbolic
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
HYEOKJUNE LEE
le 3 Mai 2018
Réponse apportée : Walter Roberson
le 3 Mai 2018
Hello,
I try to solve the 4th order equation with symbolic, but the answer is not numerical numbers, see below:
My code is
m1 = 100; %kg
m2 = 10; %kg
c1 = 1;
c2 = 1;
c3 = 1;
k1 = 100;
k2 = 100;
k3 = 100;
%
M(1,1) = m1;
M(2,2) = m2
%
C(1,1) = (c1+c2);
C(1,2) = -c2;
C(2,1) = -c2;
C(2,2) = (c2+c3)
%
K(1,1) = (k1+k2);
K(1,2) = -k2;
K(2,1) = -k2;
K(2,2) = (k2+k3)
%
a0 = M(1,1)*M(2,2)
a1 = M(1,1)*C(2,2) + M(2,2)*C(1,1)
a2 = M(1,1)*K(2,2) + C(1,1)*C(2,2) + M(2,2)*K(1,1) - C(1,2)*C(2,1)
a3 = C(1,1)*K(2,2) + K(1,1)*C(2,2) - C(1,2)*K(2,1) - C(2,1)*K(1,2)
a4 = K(1,1)*K(2,2) - K(1,2)*K(2,1)
%
syms w
%
func = a0*w^4 + a1*w^3 + a2*w^2 + a3*w^1 + a4
%
wsol = solve(func,w)
then, the matlab give me a solution which format is root(σ1, z, 1). The sigma is the above function.
How can I get the solution?
Thank you.
0 commentaires
Réponse acceptée
John D'Errico
le 3 Mai 2018
Modifié(e) : John D'Errico
le 3 Mai 2018
4 roots, all of which are complex.
vpa(wsol)
ans =
- 0.10269696007084728245763107930116 - 4.53087688516932263934459193381i
- 0.10269696007084728245763107930116 + 4.53087688516932263934459193381i
- 0.0073030399291527175423689206988387 + 1.208534091963622145606298796162i
- 0.0073030399291527175423689206988387 - 1.208534091963622145606298796162i
If you plot func, you will see that it never crosses zero.
1 commentaire
Plus de réponses (1)
Walter Roberson
le 3 Mai 2018
wsol = simplify(solve(func, w, 'MaxDegree', 4));
This will give you the numeric solutions, such as
((-1)^(1/4)*10^(1/4)*230339930457^(3/4)*(13099491187973 + 159912003^(1/2)*1638000000i)^(1/4)*(- 159912003^(1/2)*1638000000i - 13099491187973)^(1/6)*(2*33315^(1/2)*(- 5456997*30^(1/2)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/2) - 4218680045*10^(1/2)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/2) - 439697*10^(1/2)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/2) - 5*10^(1/2)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/2))^(1/2) + 10^(3/4)*2221^(1/2)*(33*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/6)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(1/4) + 3^(1/2)*(8437360090 + 10*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) - 439697*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3))^(3/4)))*(159912003^(1/2)*8793940000000i + 10*(293032087997 + 159912003^(1/2)*20000000i)*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(1/3) + 133040111*(- 13099491187973 + 159912003^(1/2)*1638000000i)^(2/3) + 16594597703959910)^(1/4)*1i)/7769568131425052256545514000
You should consider whether you actually want the numeric solutions, or if you want approximate results instead, such as the ones John showed.
If what you want is the approximate results then:
wsol_approx = vpasolve(func);
0 commentaires
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!