How can I plot a generalized Nyquist figure?

10 vues (au cours des 30 derniers jours)
Xinyu Zhang
Xinyu Zhang le 3 Mai 2018
Commenté : Mohamed Belkhayat le 14 Août 2019
The matrix is very complex, I want to use MIMO tool, but there are many problems. I attached it below. Thank you!
s=tf('s'); w0=2*3.1415926*50; L=3.8*10^-3; R=0.2; Zg=[s*L+R,-w0*L;w0*L,s*L+R];
KeSOGI=0.8; T0=1e-4; Kp_pll=6; Ki_pll=100; ed0=2000; eq0=0; KiSOGI=1; P0=960*10^3; e0=ed0; Q0=0; id0=P0/e0; iq0=-Q0/e0; L=2.08*10^(-3); R=0.2; Td=1.2*10^(-3); Kp_acc=3; Ki_acc=0.5; Kp_vcc=0.4; Ki_vcc=12; Cdc=4*10^(-3); vdc0=1500; Lm=0.0438; Rm=0.223; we=1000; Dd=0.8; Dq=0.2;
Hedq=1/(1/KeSOGI*(1/w0+T0/8)*s+1); Kpll=Kp_pll+Ki_pll/s; Gpll=Kpll*Hedq/(s+ed0*Kpll*Hedq); Gevss=[Hedq,Gpll*Hedq*eq0;0,Hedq-Hedq*ed0*Gpll];
Hidq=1/(1/KiSOGI*(1/w0+T0/8)*s+1); HiSOGI=[Hidq,0;0,Hidq]; Gicss=[0,-iq0*Hidq*Gpll;0,id0*Hidq*Gpll];
Gd=1/(Td*s+1); Kacc=Kp_acc+Ki_acc/s; Gdqc=[Gd*Kacc+R+s*L,w0*L*(Gd-1);-w0*L*(Gd-1),Gd*Kacc+R+s*L]; Gidqref=Gdqc\Gd*Kacc; Gedqc=Gdqc\(1-Gd); Gi=HiSOGI\Gidqref; Ge=HiSOGI\(Gedqc*Gevss+Gicss);
ZL=((s*Lm+Rm)*(s*Lm+Rm)+we*we*Lm*Lm)/((s*Lm+Rm)*(Dd*Dd+Dq*Dq)); Kvcc=Kp_vcc+Ki_vcc/s; MM=(e0*Ge(1,1)+P0/e0)/(s*Cdc*vdc0+2*vdc0/ZL+e0*Gi(1,1)*Kvcc); NN=(e0*Ge(1,2)-Q0/e0)/(s*Cdc*vdc0+2*vdc0/ZL+e0*Gi(1,1)*Kvcc); Gvc=[-Kvcc*MM,-Kvcc*NN;0,0]; Ytrain=Gi*Gvc+Ge;
k=15; n=1; F=n*Ytrain*Zg/(k^2); nyqmimo(F)

Réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by