Simpson's rule implementation
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
function I = simpsons()
f=@(x) (3+x.^1/2);
a = 1;
b = 6;
n = 20;
disp('n I h')
disp('________________________________')
while (n <= 140)
if numel(f)>1 % If the input provided is a vector
n=numel(f)-1;
h=(b-a)/n;
I = h/3*(f(1)+2*sum(f(3:2:end-2))+4*sum(f(2:2:end))+f(end));
else % If the input provided is an anonymous function
h=(b-a)/n;
xi=a:h:b;
I = h/3*(f(xi(1))+2*sum(f(xi(3:2:end-2)))+4*sum(f(xi(2:2:end)))+f(xi(end)));
end
fprintf('%f \t %f \t %f \n', n, I, h);
n=n+20;
end
end
Hey, I'm trying to implement Simpson's rule in matlab. I want to make n every loop n=n+20 and get different I values, but I do not get it. Where is the problem? I is numerical integration formula.
0 commentaires
Réponses (1)
Jan
le 7 Mai 2018
Modifié(e) : Jan
le 7 Mai 2018
The number of steps does not matter, if the function is linear:
f=@(x) (3+x.^1/2)
x.^1/2 is (x .^ 1) / 2, which is the same as x/2. Operator precedence: power is higher than division. I guess you mean:
f = @(x) (3 + x.^(1/2))
% or: f=@(x) (3 + x.^0.5)
% or: f=@(x) (3 + sqrt(x)) % Fastest
0 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!