Solve double integral using 'integral2'

22 vues (au cours des 30 derniers jours)
John Armitage
John Armitage le 17 Mai 2018
Modifié(e) : Torsten le 17 Mai 2018
Suppose I have this surface integral:
I use integral2 to solve the double integral but the result has complex number in it
My codes are:
syms x y z
format rat
x=sqrt(1-y.^2-z.^2)
xy=diff(x,y)
xz=diff(x,z)
dS = sqrt(100 + xy.^2 + xz.^2)
fun1 = subs((x+y+z).*dS)
f = matlabFunction(fun1)
Myz = integral2(f,0,10,0,@(y)sqrt(100-y.^2))
And the answer
f =
@(y,z)(y+z+sqrt(-y.^2-z.^2+1.0)).*sqrt(-y.^2./(y.^2+z.^2-1.0)-z.^2./(y.^2+z.^2-1.0)+1.0e2)
Warning: Reached the maximum number of function evaluations (10000). The result fails the global error test.
> In integral2Calc>integral2t (line 129)
In integral2Calc (line 9)
In integral2 (line 106)
In Untitled3 (line 18)
Myz =
139388/21 +97492/19i
What's the problem guys ? Thank you

Réponse acceptée

Torsten
Torsten le 17 Mai 2018
Modifié(e) : Torsten le 17 Mai 2018
y = sqrt(100-x^2-z^2) or y = -sqrt(100-x^2-z^2)
->
I = integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x+sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx +
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x-sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx =
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} 2*(x+z)*10/sqrt(100-x^2-z^2) dz dx
In MATLAB:
I = integral2(@(x,z)2*(x+z)*10./sqrt(100-x.^2-z.^2),0,10,0,@(x)sqrt(100-x.^2))
Best wishes
Torsten.

Plus de réponses (0)

Catégories

En savoir plus sur MATLAB dans Help Center et File Exchange

Tags

Produits


Version

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by