ode45 does not solve on the specified time interval. How do I fix this?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I have a system of differential equations that I want to solve. However, when trying to solve this DiffEq with ode45(@(t,y)odefun(t,y),tspan,y0), where I have put my odefun in a different file, it does produce results, but on a different time interval than I want. Namely, it solves for t = [0, 0.46]*10^-6, while I specified it should solve for t = [0,1].
My code: tspan = [0,1];
y0 = [0 110 -250 15];
[t,Xsolved] = ode45(@(t,y)odefun(t,y),tspan,y0);
odefun (very lengthy equations): function dXdt = odefun(t,y)
t_f = 30;
eq1 = -(82809797410786635*tan(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(pi*y(4)*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i))/(281474976710656*y(2)); eq2 = - (10019119168824577875*y(2)^2*(1361735765217477681/(28823037615171174400000*(9/10 - (17592186044416*y(2))/5918609519667053)^(27/10)) + (8450000000000*(8500259669165361/(9444732965739290427392*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)) + 13/250))/(250119*y(2)^4*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2) + 361283/50000000))/147573952589676412928 - (133588255584327705*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2))/(590295810358705651712*((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5)); eq3 = 0; eq4 = (30*((1192349413690968375975664624440915812941824*y(2)^2)/1036642641726526473848753494572130715682924789385 - (39304596247310823728047194112*y(2))/175149693231467319161999868524045 + 1266637395197952/29593047598335265)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2))/((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5) + (16561959482157327*y(4)*(300*y(2)^2*(36766865660871897387/(96970498370224996352000000*(9/10 - (17592186044416*y(2))/5918609519667053)^(37/10)) - (33800000000000*(8500259669165361/(9444732965739290427392*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)) + 13/250))/(250119*y(2)^5*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2) + 35851247107254511943359375/(86237027846621531955789824*y(2)^4*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(28/5))) + 600*y(2)*(1361735765217477681/(28823037615171174400000*(9/10 - (17592186044416*y(2))/5918609519667053)^(27/10)) + (8450000000000*(8500259669165361/(9444732965739290427392*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)) + 13/250))/(250119*y(2)^4*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2) + 361283/50000000) + (((8665580274997661924293869568000*y(2))/3184539876935769439309088518619 - 3982870920455782400/5918609519667053)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2))/((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5)))/73183493944770560000 - (30*((1149371655649416643768760270362731887714054341637701632*y(2)^3)/557771182528674706092576514838123659160733159500324835031693855 - (1576187923577786962762351181623950355464192*y(2)^2)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2))/175149693231467319161999868524045 - 3175389581017088/29593047598335265)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2)^2)/((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5)^2 - (82809797410786635*y(3)*tan(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(pi*y(4)*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i))/(281474976710656*y(2)^2) - (96559323064259661442131689472*y(2))/35029938646293463832399973704809 - 1636073302130688/5918609519667053; dXdt = zeros(4,1); dXdt(1) = eq1*t_f; dXdt(2) = eq2*t_f; dXdt(3) = eq3*t_f; dXdt(4) = eq4*t_f; end
Thanks in advance!
8 commentaires
Jan
le 29 Mai 2018
I suggest to solve the actual problem of the integration interval at first. But then a massive simplification of the equation should be the next step, if runtime matters.
Are Mjaavatten
le 30 Mai 2018
Your system is numerically highly unstable, and the solution depends heavily on the integration method and accuracy parameters. Using ode15s, which is probably more robust than ode45 in this case, the solution seems to have a near singularity at around t = 4.4e-6, where y(4) gets very close to zero.
Try
[t,u] = ode15s(@deWringer,[0,1e-5],y0);
plot(t,u,'.')
(I saved your odefun as deWringer.m.)
Most likely, there is something wrong in your derivation of odefun.
Réponses (0)
Voir également
Catégories
En savoir plus sur Timing and presenting 2D and 3D stimuli dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!