how to find maximum value in a matrix?
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
kat001
le 31 Mai 2018
Commenté : Anton Semechko
le 6 Juin 2018
Now, there is reason why I don't want to use a max() or similar built-in function to find the maximum value of a matrix. My question is following:
Imagine, we have a matrix, let's call it 'gauss' and looks like this:
gauss =
0 0.2000 0
0.5000 1.0000 0.6000
0 0.3000 0
What I want is to find the maximum, i.e. 1 or the value at gauss(2,2). I need to automize a step search from gauss(1,1) so that I end up finding gauss(2,2) in this entire matrix.
Would be glad if you could give some idea regarding the coding of the steps.
Thanks!
2 commentaires
Anton Semechko
le 31 Mai 2018
It is in general not possible to find (global) maximum value of the matrix when performing local steps, from one matrix element to its adjacent neighbours. If you do so, then for any given starting position, the algorithm will converge onto a local maximum, which may or may not be a global maximum.
Réponse acceptée
Anton Semechko
le 1 Juin 2018
Demo of local search based on 4-connected neighbourhood:
Demo of local search based on 8-connected neighbourhood:
Code used to generate these figures:
function Gauss_map_demo
% Sampling grid
N=30; % grid size
dx=2*rand(1)-1;
dy=2*rand(1)-1;
x=linspace(-2,2,N)+dx;
y=linspace(-2,2,N)+dy;
ds=x(2)-x(1);
[X,Y]=meshgrid(x,y);
% Random precision matrix (inverse of covariance)
t=rand(1)*pi;
R=[cos(t) -sin(t);sin(t) cos(t)];
D=sort((rand(1,2)+1)/2,'descend');
S=R'*diag(1./D)*R;
% Evaluate (zero-centred) Gaussian on specified grid
P=[X(:) Y(:)]';
G=exp(-0.5*sum(P.*(S*P),1));
G=reshape(G,size(X));
% Visualize
figure('color','w')
imagesc([1 N],[1 N],G)
axis equal
set(gca,'XLim',[0 N+1],'YLim',[0 N+1])
hold on
colorbar;
% Identify corner with smallest value as a starting point; this is done for
% demonstration purposes. In practice, you should select corner with
% largest value, as it will reduce number of steps required to reach
% absolute maximum.
ij=[1 1;N 1;N N;1 N]; % corner indices
id=sub2ind([N N],ij(:,1),ij(:,2));
[~,id_min]=min(G(id));
seed=ij(id_min,:);
% Search using on 4-connected neighbourhood
conn=false; % set conn=true to use 8 connected neighbourhood
[G_max,ij_max,trj]=GetMax(G,seed,conn);
fprintf('Maximum value found %.3f at G(%u,%u) in %u steps\n',G_max,ij_max(1),ij_max(2),size(trj,1))
plot(trj(:,2),trj(:,1),'-r','LineWidth',2); % ascent trajectory
plot(trj(1,2),trj(1,1),'ok','LineWidth',3,'MarkerSize',10); % start
plot(trj(end,2),trj(end,1),'xk','LineWidth',3,'MarkerSize',10); % end
function [G_max,ij_max,trj]=GetMax(G,seed,conn)
% Get maximum value of an image using local search
%
% - G : N-by-M image
% - seed : starting point
% - conn : set conn=true to use 8-connected neighbourhood {default},
% and set conn=false to use 4-connected neighbourhood
if nargin<2 || isempty(seed), seed=[1 1]; end
if nargin<3 || isempty(conn), conn=true; end
siz=size(G);
% Initial value
ij_max=seed;
G_max=G(ij_max(1),ij_max(2));
trj=ij_max;
% Neighbour offsets
ngb_x=repmat([-1 0 1],[3 1]);
ngb_y=ngb_x';
d_ij=[ngb_y(:) ngb_x(:)];
if conn
d_ij(5,:)=[];
else
d_ij([1 3 5 7 9],:)=[];
end
% Search
while true
% Indices of neighbours around ij_max
i_ngb=ij_max(1)+d_ij(:,1);
i_ngb=max(min(i_ngb,siz(1)),1);
j_ngb=ij_max(2)+d_ij(:,2);
j_ngb=max(min(j_ngb,siz(2)),1);
id_ngb=sub2ind(siz,i_ngb,j_ngb);
% Select neighbour with largest value; I am using 'max' function here, but you can loop through the neighbouring values if you want
[g_max,id_max]=max(G(id_ngb));
if g_max>G_max
G_max=g_max;
ij_max_new=[i_ngb(id_max) j_ngb(id_max)];
if nargout>2
trj=cat(1,trj,ij_max_new);
end
ij_max=ij_max_new;
else
break
end
end
7 commentaires
Anton Semechko
le 6 Juin 2018
Lets say you are at a "point" (i,j) in array G. In a 4-connected neighbourhood, neighbouring points around (i,j) are
(i-1,j+0)
(i+0,j-1)
(i+0,j+1)
(i+1,j+0)
So, the 1st index of all neighbours is i_ngb=i+d_ij(:,1), and corresponding 2nd index is j_ngb=j+d_ij(:,2). Makes sense?
Finally, recall that G is a N-by-M array. So if i=1 (resp. i=N) then regardless of j, point (i,j) doesn't have any neighbours above (resp. below) it. The statement
i_ngb=max(min(i_ngb,N),1);
will enforce this requirement.
Likewise, if j=1 (resp. j=M) then regardless of i, point (i,j) doesn't have any neighbours to the left (resp. right) of it. The statement
j_ngb=max(min(j_ngb,M),1);
will enforce this requirement.
Plus de réponses (1)
Walter Roberson
le 1 Juin 2018
gr = size(gauss,1);
gc = size(gauss,2);
rowpos = 1; colpos = 1;
improved = true;
while improved
bestval = gauss(rowpos, colpos);
improved = false;
for rowtry = max(1, rowpos-1) : min(rowpos+1, gr)
for coltry = max(1, colpos-1) : min(colpos+1, gc)
newval = gauss(rowtry, coltry);
if newval > bestval
bestval = newval;
rowpos = rowtry;
colpos = coltry;
improved = true;
break;
end
end
if improved; break; end
end
end
If it did not get caught in a local minima, then afterwards rowpos and colpos will be the location of the peak, and bestval will be the value there.
0 commentaires
Voir également
Catégories
En savoir plus sur Matrix Indexing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!