【R-CNN】複数の画像の学習について
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
MASAYUKI EGUCHI
le 17 Juin 2018
Commenté : MASAYUKI EGUCHI
le 27 Juin 2018
CNNで複数の画像特徴(例:カメラ、テレビの様に)を学習させたいと考えております。 学習させたいのは、床の損傷です。床の損傷を部分的な損傷のLvel1~4、幅広い損傷のLevel1~4にわけ、これを学習させたいと思っております。 単一の損傷であれば、ビデオセミナー 「Fast R-CNNによる物体の検出と識別」等で記載があったのですが、複数の画像特徴を学習させる方法がわかりません。 別添のPDFのコードをどのように変更すれば、複数の画像特徴を学習できますでしょうか?ご教示願います。
0 commentaires
Réponse acceptée
Eiji Ota
le 18 Juin 2018
添付して頂いたPDFを拝見しますと、"Rutting_Level2" のラベルに相当する BoundingBox のデータが存在しないためにエラーが発生しているようです。
Plus de réponses (5)
Eiji Ota
le 19 Juin 2018
領域提案(Region Proposal)がうまく見つかっていないような印象があります。ラベルの方のデータで、gTruth の中の LabelDataをみると、どうも同じ BoundingBox のデータが何度も入ってしまっている印象がありまして、ラベルがうまく作れているか、ちょっと心配ですね。大丈夫かもしれませんが… ラベルデータをロードして、gTruth.LabelData{2, 1}{:}などとタイプしてみて下さい。あと、提案領域がうまく作れていないようであれば、Step1とかStep2のエポック数を増やしてみるのもありかもしれません。
0 commentaires
Eiji Ota
le 20 Juin 2018
いまの呼び方だとラベルの情報が戻って来ないので、下のように戻り値を3個にすればラベルが戻ってきます。
[bboxes, scores, label] = detect(detector, I);
戻ってきたラベルを画像をアノテーションするときの文字列として使えばOKです。
I = insertObjectAnnotation(I, 'rectangle', bboxes, label);
0 commentaires
Eiji Ota
le 24 Juin 2018
コードの方を拝見致しますと、CheckPointPath というオプションが有効になっておりまして、これが有効になっていますと、計算の途中結果をディスクに保存するようになります。計算の途中結果が必要ないようであれば、このオプションを無効にしてして頂くと、ディスクの容量を節約することができます。
Voir également
Catégories
En savoir plus sur シミュレーションの実行 dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!