Line orientation in 3D from centroid and Euler angles

15 vues (au cours des 30 derniers jours)
matnewbie
matnewbie le 19 Juin 2018
Commenté : Saurabh Patel le 20 Sep 2018
I used the regionprops3 function to detect centroid and Euler angles of cylinders of the same size in 3D space. Now I want to obtain the 3D coordinates of a line (of given length, representing the axis of the cylinders) passing through the centroid and oriented according to the three Euler angles. What kind of coordinate transformation should I consider?

Réponse acceptée

Matt J
Matt J le 19 Juin 2018
Modifié(e) : Matt J le 19 Juin 2018
I think you'd be better off using regionprops3 to extract the Eigenvalues and Eigenvectors properties of the cylinders, instead of the Orientation property (which I assume you are using now). The eigenvector corresponding to the largest eigenvalue should give you the direction vector of the long axis of the cylinder directly.
  5 commentaires
Matt J
Matt J le 19 Juin 2018
Modifié(e) : Matt J le 19 Juin 2018
Well, as I said, the eigenvector corresponding to the largest eigenvalue is the direction vector. So, you have it already from
regionprops3(yourImage, 'Centroid','EigenVectors','EigenValues')
One thing to note. I believe the EigenVectors are the rows of the matrix given in the output of regionprops3, not the columns.
Saurabh Patel
Saurabh Patel le 20 Sep 2018
I think eigenvectors are still the columns of eigenvector matrix but they are in image coordinates i.e. (row,col,page) and not in (x,y,z).
For (x,y,z) space, I think we need to represent it as {eigenvector(2,1), eigenvector(1,1), eigenvector(3,1)} for the major principal direction.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Matrix Computations dans Help Center et File Exchange

Produits


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by