Activations of freezed layers are different between before/after training, why?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
ntinoson
le 29 Juin 2018
Commenté : Amanjit Dulai
le 28 Août 2018
I follow the example "transfer-learning-using-googlenet" where, the last 3 layers ('loss3-classifier','prob','output') are replaced with 3 new ones. Then I 'freeze' the first 141 layers (that is up to and including 'pool5-drop_7x7_s1'):
layers(1:141) = freezeWeights(layers(1:141));
lgraph = createLgraphUsingConnections(layers,connections);
Then I follow fine-tuning.
Since 'pool5-7x7_s1' is BEFORE 'pool5-drop_7x7_s1', I would expect that the following two vectors were the same:
b_orig= activations(net_orig, I, 'pool5-7x7_s1');
b_tune= activations(net_tune, I, 'pool5-7x7_s1');
but they aren't!... Any idea why?
p.s. I also tried the activation of several other layers BEFORE 'pool5-drop_7x7_s1', and I got different vectors.... 'I' is an image, 'net_orig=googlenet;', and 'net_tune' is the resulting net after tuning.
2 commentaires
Réponse acceptée
Amanjit Dulai
le 14 Août 2018
The vectors are different because when you fine tune on a new dataset, the average image in "imageInputLayer" is recalculated for your new dataset.
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!