Euler's Method
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Using the Euler method solve the following differential equation. At x = 0, y = 5.
y' + x/y = 0
Calculate the Numerical solution using step sizes of .5; .1; and .01
From my text book I have coded Euler's method
function [t,y] = eulode(dydt, tspan, y0, h)
%eulode: Euler ODE solver
% [t,y] = eulode(dydt, tspan, y0, h, p1, p2,...)
% ` uses EULER'S method to INTEGRATE an ODE
% (uses the slope at the beginning of the stepsize to graph the
% function.)
%Input:
% dydt = name of hte M-file that evaluates the ODE
% tspan = [ti,tf] where ti and tf = initial and final values of
% independent variables
% y0 = initial value of dependent variable
% h = step size
% p1,p2 = additional parameter used by dydt
%Output:
% t = vector of independent variable
% y = vector of solution for dependent variable
if nargin<4, error('at least 4 input arguments required'), end
ti = tspan(1); tf = tspan(2);
if ~ (tf>ti), error('upper limit must be greater than lower limit'), end
t = (ti:h:tf)';
n = length(t);
%if necessary, add an additional value of t
%so that range goes from t=ti to tf
if t(n)<tf
t(n+1) = tf;
n = n+1;
t(n)=tf;
end
y = y0*ones(n,1); %preallocate y to improve efficiency
for i = 1:n-1 %implement Euler's Method
y(i+1) = y(i) + dydt(t(i),y(i))*(t(i+1)-t(i));
end
plot(t,y)
I have made another m-file to run Eulode, what I am confused with is where do I input my different step sizes and where do I input x=0 and y=5. However since the analytical solution yields:
simplify(dsolve('Dy=-x/y','y(0)=5','x'))
ans =
(-x^2+25)^(1/2)
and when x=0 the value is 5 so I have coded my Euler's Method like the following and the final values are close to 5 so I think it is correct can someone just verify.
dydx=@(x,y) -(x/y);
[x1,y1]=eulode(dydx, [0 1],5,.5);
[x2,y2]=eulode(dydx,[0 1],5,.1);
[x3,y3]=eulode(dydx,[0 1],5,.01);
disp([x1,y1])
disp([x2,y2])
disp([x3,y3])
1 commentaire
Réponses (1)
Walter Roberson
le 27 Mar 2011
Yup, you have provided the values in the correct positions according to the documentation for eulode.
2 commentaires
Matt Tearle
le 28 Mar 2011
How are you determining the error? If you're using the calculation you used here http://www.mathworks.com/matlabcentral/answers/4165-plotting-error then that's an incorrect calculation. So your use of the code here is fine, and Euler's method is indeed more accurate with a smaller stepsize.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!