
How to differentiate a piecewise function?
17 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
ahed salman
le 7 Juil 2018
Commenté : ahed salman
le 7 Juil 2018
Hi to all. I have a piecewise function and I want to differentiate it but the derivative will not exist at endpoints. I tried to interpolate it such that the edges are more smooth and the derivative is continuous, but when I plot it, I still get the harsh edges. What to do now? This is my code:
t=0:60;
L =(15-t/2).*(t>=0 & t<=20)+...
(5).*(t>20 & t<=40 )+(-15+t/2).*(t>40 & t<=60 );
P=interp1(t,L,'pchip');
hold on
plot (t,P,'linewidth',4)
xlim([0 70])
ylim([0 20])
0 commentaires
Réponse acceptée
Image Analyst
le 7 Juil 2018
Since you know the formula, you have an advantage - you can just use the known derivative:
t=0:60;
L =(15-t/2).*(t>=0 & t<=20)+...
(5).*(t>20 & t<=40 )+(-15+t/2).*(t>40 & t<=60 );
P=interp1(t,L,'pchip');
% Plot L vs. t
subplot(3, 1, 1);
plot (t, L, 'LineWidth', 4)
xlim([0 70])
ylim([0 20])
grid on;
xlabel('t', 'FontSize', 20);
ylabel('L', 'FontSize', 20);
% Plot P vs. t
subplot(3, 1, 2);
plot (t, P, 'LineWidth', 4)
xlim([0 70])
ylim([0 20])
grid on;
xlabel('t', 'FontSize', 20);
ylabel('P', 'FontSize', 20);
% Since we know the formula and when it starts and stops each piece
% we can compute the derivative analytically:
dLdt = zeros(1,length(L));
range1 = t>=0 & t<=20;
dLdt(range1) = -0.5;
range2 = t>40 & t<=60;
dLdt(range2) = 0.5;
% Plot dLdt vs. t
subplot(3, 1, 3);
plot (t, dLdt, 'b^-', 'LineWidth', 2)
xlim([0 70])
grid on;
xlabel('t', 'FontSize', 20);
ylabel('dLdt', 'FontSize', 20);
ax = gca;
ax.XAxisLocation = 'origin';

Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Interpolation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!