Finding min point of a second derivative function

8 vues (au cours des 30 derniers jours)
Harel Harel Shattenstein
Harel Harel Shattenstein le 8 Juil 2018
What I have done is:
f=@(x)2./sqrt(pi).*integral(@(t)exp(-t.^2),0,x);
fplot(f,[-5,5])
DELTA=0.01;
X=-5:DELTA:5;
Y=f(X);
DY_DX=diff(Y)./DETLA;
But it does not work, is there an easier way to the first/second derivative? (not symbolic)

Réponses (1)

Eduard Reitmann
Eduard Reitmann le 3 Août 2018
You were almost there. Hope this helps. The zero in the differential is a bit crude (just to keep the vectors the same length), but a small enough step size should give you are very accurate answer.
f = @(x) (2./sqrt(pi)).*integral(@(t) exp(-t.^2),0,x);
dx = 0.01;
x = (-5:dx:5)';
y = arrayfun(f,x);
dydx = [0;diff(y)./dx];
d2ydx2 = [0;diff(dydx)./dx];
[dy2d2x_min,minpos] = min(d2ydx2);
x_min = x(minpos)
figure;
plot(x,[y dydx d2ydx2],x_min,dy2d2x_min,'*')
legend('erf(x)','erf''(x)','erf''''(x)')

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by