Use fsolve function in genetic algorithm toolbox
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Sepanta Gharib
le 8 Juil 2018
Commenté : Walter Roberson
le 1 Mai 2019
I have a one-variable nonlinear equation that needs to be solved with the " fsolve" function. This equation also has a parameter that should be optimized by the genetic algorithm. To use the genetic algorithm toolbox, I have to write a separate objective function file for it which should contain the " fsolve" function. But how to define the parameter to be optimized in the first line? I can not define the input variable due to the " fsolve" function.
1 commentaire
Réponse acceptée
Walter Roberson
le 8 Juil 2018
fun = @(x, param) 5 + exp(-(x-param).^2);
guess = 0.12345;
ga( @(param) fsolve( @(x) fun(x, param), guess), .... )
2 commentaires
Mehdi
le 1 Mai 2019
Is there a way that you could give a numerical example that I could actually run in MATLAB for better understanding? Thank you!
Walter Roberson
le 1 Mai 2019
fun = @(x, param) exp(x-param) - 1/10;
guess = 0.12345;
[P,fval] = ga( @(param) (5+fsolve( @(x) fun(x, param), guess, optimoptions('fsolve', 'Display', 'none'))).^2, 1, [], [], [], [], [], [], [], gaoptimset('display', 'iter', 'TolFun', 1e-9, 'Generations', 1000))
This looks for an x and a param such that exp(x-param) is 1/10 and x is as close as possible to -5.
Here, "close to -5" is expressed as (5+value)^2 being minimal, which would best occur when value was -5
... It could do better. ga() is not such a great optimizer.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!