How to achieve better regression using Neural network having 364*6 inputs and 364*1 output?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I have 364*6 inputs and 364*1 output and loading into neural network of 10 neurons and all other settings are given below:
clear all;
close all;
load('nmtraindata.mat');
in=input';
ref=output';
net = feedforwardnet(10);
% net.performFcn = 'mse';
net.performFcn = 'mae';
%set NN function and other parameters 2if desired
net.layers{1}.transferFcn = 'tansig'; % transfer function is "x=y" %tansig logsig
% net.layers{2}.transferFcn = 'tansig';
net.trainParam.max_fail = 1000;
net.trainParam.min_grad=1e-9;
net.trainParam.show=10; %showing intervals
net.trainParam.lr=0.1; %learning rate
net.trainParam.epochs=1000; %maximum iterations
net.trainParam.goal=0; %error goal
net.trainParam.mc = 0.9;
% train the NN
net = train(net,in,ref);
estim_out = sim(net,in); % simulate the network to calculate output
plot(estim_out,'r'); hold on;
plot(ref,'b')
If there is less noisy data then regression plot is 1 (desired) but when i program large data set like the above one, i don't regression above 0.5. Am I missing something, like, do I need to change settings of neural network?
Looking forward for a positive solution and guidelines to this problem.
5 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!