running k-means and getting different results run after run?
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
cgo
le 17 Août 2018
Commenté : Mehmet Volkan Ozdogan
le 2 Avr 2019
I am running k-means clustering algorithm on a data, and I don't understand why I am getting different silhouette plots each time I run this. Is there a way to stabilise this? (or set the number of iterations) so I get the same results?
3 commentaires
Réponse acceptée
Image Analyst
le 17 Août 2018
That's normal. Specify 'Replicates' to get convergence.
% Do kmeans clustering on the gray scale image.
grayLevels = double(grayImage(:)); % Convert to column vector.
[clusterIndexes, clusterCenters] = kmeans(grayLevels, numberOfClusters,...
'distance', 'sqEuclidean', ...
'Replicates', 2);
labeledImage = reshape(clusterIndexes, rows, columns);
See attached demo.
3 commentaires
Image Analyst
le 27 Mar 2019
You forgot to attach 'ucd1.xlsx', or even any scatterplots. Please do so, so we can help you.
Mehmet Volkan Ozdogan
le 2 Avr 2019
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!