Implicit differentiation of this equation

19 vues (au cours des 30 derniers jours)
Ankit Gupta
Ankit Gupta le 23 Août 2018
Commenté : UMAIR le 9 Avr 2023
I am learning Differentiation in Matlab I need help in finding implicit derivatives of this equations find dy/dx when x^2+x*y+y^2=100 Thank you.
  1 commentaire
madhan ravi
madhan ravi le 23 Août 2018
Is y a function of x and x(t)?

Connectez-vous pour commenter.

Réponse acceptée

Walter Roberson
Walter Roberson le 23 Août 2018
syms x y
diff(solve(x^2+x*y+y^2==100,y),x)
You will get two solutions because there are two distinct y for each x
If you want, you could continue
syms dy; solve(dy == diff(solve(x^2+x*y+y^2==100,y),x),x)
to get x in terms of dy
  2 commentaires
Ankit Gupta
Ankit Gupta le 25 Août 2018
what if i need answer in terms of x and y?
Walter Roberson
Walter Roberson le 26 Août 2018
I do not know how to solve it in terms of x and y.

Connectez-vous pour commenter.

Plus de réponses (1)

Mbar
Mbar le 18 Oct 2020
Modifié(e) : Mbar le 18 Oct 2020
Consider implicit function . It is not always possible to solve analytically for . However, almost always you can use the Implicit Function Theorem:
, as long as .
( are partial derivatives: ).
Thus, define the implicit function, , and the derivative is
. In Matlab (using Symbolic Math Toolbox):
syms x y %Declaring symbilic variables
F(x,y) = x^2 + x*y + y^2 - 100 %Declaring implicit function
% Using Implicit Function Theorem
dy_dx = - diff(F,x)/diff(F,y)
% Answer:
% -(2*x + y)/(x + 2*y)
This derivative is a function of both x and y. However it has a meaning only for pairs which satisfy the implicit function . You can solve for such points using what Walter Roberson suggested. For example, solve for y as a function of x, and substitute :
double(subs(solve(F, y), x, 10))
This gives two points which satisfy the implicit function: , and . You can calculate the derivatve at these points for example:
x0 = 10; y0 = -10;
F(x0, y0) %answer 0, i.e. the implicit function is satisfied.
dy_dx(x0, y0) %answer 1
x1 = 10; y1 = 0;
F(x1, y1) %answer 0, i.e. the implicit function is satisfied.
dy_dx(x1, y1) %answer -2
  1 commentaire
UMAIR
UMAIR le 9 Avr 2023
If we want to find d^2y/dx^2 ?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Logical dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by