Select all (non-zero) columns of sparse matrix

3 vues (au cours des 30 derniers jours)
Quinten Rensen
Quinten Rensen le 24 Août 2018
Commenté : Quinten Rensen le 27 Août 2018
Hi all,
Since I'm working with very large and sparse matrices I use sparse() to define these matrices. I do this by defining the index of the rows and columns and their corresponding value in separate vectors. For example, for a row i and columns j,j-1,j+1, the values in the matrix are defined according:
s = 1;
row(s) = i; column(s)=j; K(s) = 1; s=s+1;
row(s) = i; column(s)=j-1; K(s) = -1; s=s+1;
row(s) = i; column(s)=j+1; K(s) = -1; s=s+1;
%This is done for all non-zero points
K_matrix = sparse(row,column,K);
This works great when specifying distinct values. However, how can I use this sparse indexing when the value depends on values in other rows of the matrix. For example:
K(i,:) = K(i-1,:) + K(i+1,:);
i.e. I need all the values of another row in order to construct the current row, since I can't do something like this:
row(s) = i; column(s)=:; K(s) = K(i-1,:)+K(i+1,:); s=s+1;
I use this way of defining the sparse matrix since it is recommended for speed. Does anyone know how I can circumvent this problem without Matlab becoming slow when building the matrix?
Kind regards
  3 commentaires
Quinten Rensen
Quinten Rensen le 26 Août 2018
I'm sorry, you can do that, but you will get the warning 'this sparse indexing expression is likely to be slow'. I introduced the row(s), column(s) indexing for speed (which I need, since the matrices become quite large).
Jan
Jan le 26 Août 2018
@Quinten Rensen: Posting an answer requires to understand, what you want to achieve, so please explain this. The purpose of "column(s)=:" is still not clear and it is no valid Matlab syntax.

Connectez-vous pour commenter.

Réponse acceptée

Matt J
Matt J le 26 Août 2018
Modifié(e) : Matt J le 26 Août 2018
The best way will depend on the specifics of which rows are independent and how the remaining rows are derived from them. However, often the way would be to fill all of the independent rows first and then use vectorized operations to fill the remaining ones simultaneously. For example, starting with the sparse matrix,
>> K=spdiags([1 0 1 0 1].',0,5,5); full(K)
ans =
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
I can fill in the even-numbered rows with the sum of their neighboring rows in a single statement,
>> K(2:2:end,:) = K(1:2:end-1,:)+K(3:2:end,:); full(K)
ans =
1 0 0 0 0
1 0 1 0 0
0 0 1 0 0
0 0 1 0 1
0 0 0 0 1
  3 commentaires
Matt J
Matt J le 26 Août 2018
Also, it's probably better to work on columns rather than rows, transposing the final matrix so that columns become rows, if needed.
Quinten Rensen
Quinten Rensen le 27 Août 2018
Thank you very much Matt! This was what I was looking for!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Sparse Matrices dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by