Speed comparison between polyfit and A\y

2 vues (au cours des 30 derniers jours)
Karthik
Karthik le 20 Juin 2012
I have a program where I am fitting a straight line to a set of data repeatedly over a million times. I wanted to get the most efficient possible code for doing this and thought polyfit would be the way to go. Surprisingly I found that polyfit is about 60 times slower than a simple A\y type estimation. I used the code below to test this out. Why is polyfit so slow ?
X = 0:50;
Y = X + 0.3 + randn(size(X));
N = 1000;
tic
for count = 1:N
temp = polyfit(X,Y,1);
end
tm = toc;
disp(sprintf('Polyfit too %g ms per call',tm/N/1e3));
tic
for count = 1:N
temp = [ones(length(X),1) ,reshape(X,length(X),1)] \ reshape(Y,length(Y),1);
end
tm = toc;
disp(sprintf('A\\y too %g ms per call',tm/N/1e3));
The output is
Polyfit took 614.351 micro seconds per call
A\y took 10.2792 micro seconds per call
Karthik
  1 commentaire
Sean de Wolski
Sean de Wolski le 20 Juin 2012
If you:
>>edit polyfit
You'll see that it's a big fancy wrapper for A\b.

Connectez-vous pour commenter.

Réponse acceptée

per isakson
per isakson le 20 Juin 2012
Study the performance of the code with the function, profile. Thus
profile on
code under test
profile viewer
Note especially that this line is dark red
0.97 1000 72 elseif warnIfLargeConditionNumber(R)
  1 commentaire
Karthik
Karthik le 20 Juin 2012
Thanks! That makes sense!
Karthik

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by