- Ensure your traindata and trainlabels are correctly formatted.
- Decide on the number of folds (e.g., 5 or 10).
- Loop over each fold, train the model on the training subset, and evaluate on the validation subset.
how to use 5 fold cross validation with random forest classifier
    18 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
Hello, I have problem in using cross validation with random forest classifier. I use the code bellow to create my RF classification model but I do not know how to cross validate it. thanks.
    % How many trees do you want in the forest? 
nTrees = 55;
% Train the TreeBagger (Decision Forest).
B = TreeBagger(nTrees,traindata,trainlabels, 'Method', 'classification');
0 commentaires
Réponses (1)
  Shubham
      
 le 6 Sep 2024
        HI Androw,
Cross-validation is a great way to assess the performance of your random forest model. In MATLAB, you can use the crossval function to perform k-fold cross-validation. However, TreeBagger itself doesn't directly support cross-validation. Instead, you can manually implement cross-validation using a loop. Refer to this documentation: https://in.mathworks.com/help/stats/classificationsvm.crossval.html
Step-by-Step Guide to Cross-Validation with Random Forest
Here's a sample code to illustrate this process:
% Number of trees
nTrees = 55;
% Number of folds for cross-validation
k = 5;
% Create a partition for k-fold cross-validation
cv = cvpartition(trainlabels, 'KFold', k);
% Initialize an array to store the accuracy for each fold
accuracy = zeros(k, 1);
% Perform cross-validation
for i = 1:k
    % Get the training and validation indices for this fold
    trainIdx = training(cv, i);
    testIdx = test(cv, i);
    % Extract training and validation data
    trainDataFold = traindata(trainIdx, :);
    trainLabelsFold = trainlabels(trainIdx);
    testDataFold = traindata(testIdx, :);
    testLabelsFold = trainlabels(testIdx);
    % Train the TreeBagger model
    B = TreeBagger(nTrees, trainDataFold, trainLabelsFold, 'Method', 'classification');
    % Predict on the validation set
    predictedLabels = predict(B, testDataFold);
    % Convert cell array of predicted labels to numeric array if needed
    if iscell(predictedLabels)
        predictedLabels = str2double(predictedLabels);
    end
    % Calculate accuracy for this fold
    accuracy(i) = sum(predictedLabels == testLabelsFold) / numel(testLabelsFold);
end
% Calculate the average accuracy across all folds
averageAccuracy = mean(accuracy);
fprintf('Average Cross-Validation Accuracy: %.2f%%\n', averageAccuracy * 100);
0 commentaires
Voir également
Catégories
				En savoir plus sur Classification Ensembles dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

