create random diagonalisable matrix

8 vues (au cours des 30 derniers jours)
Gary Soh
Gary Soh le 18 Sep 2018
hi.. I would like to create a random diagonalisable integer matrix. Is there any code for that? thereafter I would want to create matrix X such that each the columns represent the eigenvectors.

Réponse acceptée

David Goodmanson
David Goodmanson le 19 Sep 2018
Hi Gary,
another way:
n = 7 % A is nxn
m = 9 % random integers from 1 to m
X = randi(m,n,n)
D = round(det(X))
lam = 1:n % some vector of unique integer eigenvalues, all nonzero
lamD = lam*D % final eigenvalues
A = round(X*diag(lamD)/X)
A*X - X*diag(lamD) % check
If n is too large and m is too small, this doesn't work sometimes because X comes up as a singular matrix.
  3 commentaires
Bruno Luong
Bruno Luong le 19 Sep 2018
Modifié(e) : Bruno Luong le 19 Sep 2018
Actually there is no problem of lam to have null element(s). One can also select it randomly in the above code if the spectral probability is matter.
p = 5; % eg
lam = randi(p,1,n)
David Goodmanson
David Goodmanson le 19 Sep 2018
spectral variation does seem like a good idea.

Connectez-vous pour commenter.

Plus de réponses (2)

Bruno Luong
Bruno Luong le 18 Sep 2018
Modifié(e) : Bruno Luong le 19 Sep 2018
Code for both A and X are integer.
I edit the 1st version of the code (if you happens to see t) essentially a bug correction and better generation and simplification. Second edit: fix issue with non-simple eigen-value.
% Building A random (n x n) integer matrix
% and X (n x n) integer eigen-matrix of A
% meaning A*X = diag(lambda)*X
n = 4;
m = 5;
p = 5;
d = randi(2*m+1,[1,n])-m-1;
C = diag(d);
while true
P = randi(2*p+1,[n,n])-p-1;
detP = round(det(P));
if detP ~= 0
break
end
end
Q = round(detP * inv(P));
A = P*C*Q;
g = 0;
for i=1:n*n
g = gcd(g,abs(A(i)));
end
A = A/g;
lambda = sort(d)*(detP/g);
I = eye(n);
X = zeros(n);
s = 0;
for k=1:n
Ak = A-lambda(k)*I;
r = rank(Ak);
[~,~,E] = qr(Ak);
[p,~] = find(E);
j1 = p(r+1:end);
j2 = p(1:r);
[~,~,E] = qr(Ak(:,j2)');
[p,~] = find(E);
i1 = p(r+1:end);
i2 = p(1:r);
Asub = Ak(i2,j2);
s = mod(s,length(j1))+1;
x = Ak(:,j2) \ Ak(:,j1(s));
y = zeros(n-r,1);
y(s) = -1;
x = round([x; y]*det(Asub));
g = 0;
for i=1:n
g = gcd(g,abs(x(i)));
end
X([j2;j1],k) = x/g;
end
D = diag(lambda);
A
X
% % Verification A*X = X*D
A*X
X*D

Matt J
Matt J le 18 Sep 2018
Modifié(e) : Matt J le 18 Sep 2018
How about this,
A=randi(m,n);
A=A+A.';
[X,~]=eig(A,'vector');
  4 commentaires
Gary Soh
Gary Soh le 18 Sep 2018
yes
Matt J
Matt J le 18 Sep 2018
Modifié(e) : Matt J le 18 Sep 2018
I don't think the problem is specified well enough. Eigenvectors are always unique only up to a scale factor and, in finite precision computer math, can always be made integer if you multiply them by a large enough scaling constant.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by