Matrix similarity transformations introduce small imaginary eigenvalue components
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Anish Potnis
le 2 Oct 2018
Modifié(e) : Anish Potnis
le 2 Oct 2018
So I'm having an issue with numerical precision. To boil my problem down...
Let A = eye(3) + 1e-6*rand(3) (1)
and let eig(A) return all real eigenvalues (empirically, this happens about 80% the time when I run (1)). I then apply a unitary similarity transformation, B = QAQ*. Now, eig(B) has a small imaginary component, which is a problem for my application.
Is it preferable to symmetrize A prior to the similarity transformation, or to symmetrize B after the similarity transformation...?
I'm not familiar with any theorems that relate the real part of a matrix's eigenvalues to the eigenvalues of its symmetrized form.
Any thoughts?
Thanks!
2 commentaires
David Goodmanson
le 2 Oct 2018
Modifié(e) : David Goodmanson
le 2 Oct 2018
Hi Anish, if the unitary matrix Q is known, can you just skip the eigenvalue calculation on B? The eigenvalues of A and B are identical, and if
[V_A lambda] = eig(A)
then the similar eigenvector matrix for B is
V_B = Q*V_A
(in comparing results, eig(A) and eig(B) may have eigenvalues in different order and their eigenvector matrix columns in the same different order, but that is a bookkeeping detail).
Réponse acceptée
Christine Tobler
le 2 Oct 2018
If you know the matrix A is supposed to be symmetric, I'd say symmetrize A, and then symmetrize B again, because Q*A*Q' will introduce a small numerical error and not be exactly symmetrical.
Although if you can directly transform the eigenvalues as David suggest, that would probably be best. It depends on whether the matrix A is meant to be symmetric, I'd say.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!