Training a neural network

2 vues (au cours des 30 derniers jours)
Sam harris
Sam harris le 29 Juin 2012
Hi,
I am trying to develop a neural network which predicts an output based on 4 inputs, one of which is the output of the previous step. Currently I am just using a standard function fitting network (not a time-series prediction).
The neural network works really well (r squared approx. 0.98 - 0.99) when the output of the previous step is given independent of the neural network result.
However, when I use the neural network predicted output as the input to the next prediction, the neural network result is virtually worthless. Also, the results differ greatly every time I re-train the network - i.e. it seems the results are very dependent on the initial weights.
I am not sure if this is a problem of overtraining? Any help would be greatly appreciated.
Sam
  5 commentaires
Greg Heath
Greg Heath le 4 Sep 2012
Please post this as a new question.
Greg Heath
Greg Heath le 4 Sep 2012
How many data points? How many hidden nodes? Is there a validation set for stopping? Do you get the same type of performace from a matlab demo data set?

Connectez-vous pour commenter.

Réponse acceptée

Greg Heath
Greg Heath le 22 Avr 2014
Sam harris on 2 Jul 2012
% Create a Nonlinear Autoregressive Network with External Input
% inputDelays = 1:1; feedbackDelays = 1:1; hiddenLayerSize = 10;
1. What makes you think these are appropriate inputs??
% net =narxnet(inputDelays,feedbackDelays,hiddenLayerSize);
% net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
% net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};
2. Why bother? The last 2 statements are defaults.
% [inputs,inputStates,layerStates,targets] = preparets(net,inputSeries,{},targetSeries);
% net.divideFcn = 'dividerand'; % Divide data randomly
% net.divideMode = 'value'; % Divide up every value
3. The last 2 statements are inappropriate for time series
% net.divideParam.trainRatio = 70/100; net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
% net.trainFcn = 'trainlm'; % Levenberg-Marquardt
% net.performFcn = 'mse'; % Mean squared error
% net.plotFcns = {'plotperform','plottrainstate','plotresponse', ...
% 'ploterrcorr', 'plotinerrcorr'};
4. Why bother? The last 6 statements are defaults.
% % Train the Network
% [net,tr] =train(net,inputs,targets,inputStates,layerStates);
% if true % code
% end
5. What does "if true ...etc... end" suppose to do?
6. You still have to close the loop and continue training.
7. See

Plus de réponses (1)

Greg Heath
Greg Heath le 30 Juin 2012
For the fitting net I assume you are using
x =[input(:,2:end); target(:,1:end-1)];
t = target(:,2:end);
size(input) = ?
size(target) = ?
numHidden = ?
net.divideParam = ?
R2trn ~ 0.985
R2val = ?
R2tst = ?
How is the timeseries net configured? Please include code.
Hope this helps.
Greg
  3 commentaires
Greg Heath
Greg Heath le 3 Juil 2012
You didn't answer my questions.
Greg
Sam harris
Sam harris le 3 Juil 2012
Hi Greg,
Thanks for your time, in answer to your questions:
size(input) = 12000 rows by 5 columns (data time series in rows)
numHidden = 10
net.divideParam = 70% used for training, 15% for validation, 15% for testing
R2trn ~ 0.985
R2val ~ 0.98
R2tst ~ 0.98
Code Used:
inputSeries = tonndata(Input,false,false);
targetSeries = tonndata(FOS,false,false);
Test1 = tonndata(Test1,false,false);
FOS1 = tonndata(FOS1,false,false);
inputDelays = 1:1;
feedbackDelays = 1:1;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);
eedback Pre/Post-Processing Functions
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
[inputs,inputStates,layerStates,targets] = preparets(net,inputSeries,{},targetSeries);
net.divideFcn = 'dividerand';
net.divideMode = 'value';
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainFcn = 'trainlm'; % Levenberg-Marquardt
net.performFcn = 'mse'; % Mean squared error
net.plotFcns = {'plotperform','plottrainstate','plotresponse', ...
'ploterrcorr', 'plotinerrcorr'};
[net,tr] = train(net,inputs,targets,inputStates,layerStates);
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
trainTargets = gmultiply(targets,tr.trainMask);
valTargets = gmultiply(targets,tr.valMask);
testTargets = gmultiply(targets,tr.testMask);
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)
save('my_network','net'); %Saves the network
delay=1;
inputSeriesPred = [inputSeries(end-delay+1:end),Test1];
targetSeriesPred = [targetSeries(end-delay+1:end),FOS1];
[Xs,Xi,Ai,Ts] = preparets(net,inputSeriesPred,{},targetSeriesPred);
yPred = net(Xs,Xi,Ai);
perf = perform(net,yPred,FOS1);
yPred=cell2mat(yPred);
ave=mean(FOSA);
for i=1:length(yPred);
D(i,1)=(FOSA(i,1)-ave)^2;
SSTOT=sum(D);
D1(i,1)=(yPred(1,i)-FOSA(i,1))^2;
SSERR=sum(D1);
end
RSOS=1-(SSERR/SSTOT);
RSOSif true
% code
end
The network appears to be training fine until I use a closeloop network to test it.
Once again many thanks for your help,
Sam

Connectez-vous pour commenter.

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by