Determine decay order of a plot
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Is there any way of determining the exponential decay order of a plot in MATLAB or showing the equation of the graph like excel does?
0 commentaires
Réponses (2)
madhan ravi
le 21 Oct 2018
To view the equation read https://www.mathworks.com/help/matlab/data_analysis/interactive-fitting.html see 4th sentence under Predict the Census Data with a Cubic Polynomial Fit
0 commentaires
Image Analyst
le 21 Oct 2018
Yes. See this demo where you can find the parameters with fitnlm():
% Uses fitnlm() to fit a non-linear model (an exponential decay curve) through noisy data.
% Requires the Statistics and Machine Learning Toolbox, which is where fitnlm() is contained.
% Initialization steps.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
% Create the X coordinates from 0 to 20 every 0.5 units.
X = 0 : 0.5 : 20;
% Define function that the X values obey.
a = 10 % Arbitrary sample values I picked.
b = 0.4
Y = a + exp(-X * b); % Get a vector. No noise in this Y yet.
% Add noise to Y.
Y = Y + 0.05 * randn(1, length(Y));
% Now we have noisy training data that we can send to fitnlm().
% Plot the noisy initial data.
plot(X, Y, 'b*', 'LineWidth', 2, 'MarkerSize', 15);
grid on;
% Convert X and Y into a table, which is the form fitnlm() likes the input data to be in.
tbl = table(X', Y');
% Define the model as Y = a + exp(-b*x)
% Note how this "x" of modelfun is related to big X and big Y.
% x((:, 1) is actually X and x(:, 2) is actually Y - the first and second columns of the table.
modelfun = @(b,x) b(1) + b(2) * exp(-b(3)*x(:, 1));
beta0 = [10, .4, 1]; % Guess values to start with. Just make your best guess.
% Now the next line is where the actual model computation is done.
mdl = fitnlm(tbl, modelfun, beta0);
% Now the model creation is done and the coefficients have been determined.
% YAY!!!!
% Extract the coefficient values from the the model object.
% The actual coefficients are in the "Estimate" column of the "Coefficients" table that's part of the mode.
coefficients = mdl.Coefficients{:, 'Estimate'}
% Create smoothed/regressed data using the model:
yFitted = coefficients(1) + coefficients(2) * exp(-coefficients(3)*X);
% Now we're done and we can plot the smooth model as a red line going through the noisy blue markers.
hold on;
plot(X, yFitted, 'r-', 'LineWidth', 2);
grid on;
title('Exponential Regression with fitnlm()', 'FontSize', fontSize);
xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
legendHandle = legend('Noisy Y', 'Fitted Y', 'Location', 'north');
legendHandle.FontSize = 25;
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
% Get rid of tool bar and pulldown menus that are along top of figure.
% set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')

0 commentaires
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!