LDA analysis: The pooled covariance matrix of TRAINING must be positive definite.

1 vue (au cours des 30 derniers jours)

Hello, I am running into this issue. How can I resolve it?

Y = csvread('mydata.csv');
flag = Y(:,1);
label = Y(:,2);
P = Y(:,3:end);
train = Y((flag < 5) & (label == 8|9),:);
test = Y((flag == 5) & (label == 0),:);
[coeff,score,latent] = pca(train);
group = Y((flag < 5) & (label == 8|9));
class = classify(Y,train,group,'linear');

My research online gives me some hints that I should apply PCA to the training samples and project onto the first 2 principal components. Then, apply LDA to project onto 1 dimension.

How can I take the result of PCA and input it as a parameter in classify()?

Thank you!

Réponses (1)

Fadi Alsuhimat
Fadi Alsuhimat le 6 Juil 2020
Just write it like this
augmentedTrainset=augmentedImageDatastore(imagesize,...
trainset,'ColorPreprocessing','gray2rgb');
%%% this mean you add another type for lda by using 'ColorPreprocessing','gray2rgb'

Catégories

En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by