Is there any code or command for doubling a point ?

11 vues (au cours des 30 derniers jours)
Maria Hameed
Maria Hameed le 23 Oct 2018
Commenté : Ammy le 21 Fév 2022
I have an elliptic curve y*2=x*3+148x+225 mod 5003 I took G=(1355,2421) as the shared key I want to find points as (G,2G,3G,4G,......5003G)
  2 commentaires
madhan ravi
madhan ravi le 23 Oct 2018
can you give a clear example?
Maria Hameed
Maria Hameed le 23 Oct 2018
input:(G,2G,3G,4G,....5003G) output:[(1355,2421),(533,2804),(4896,1633),(2822,532),.....,(1329,2633)]

Connectez-vous pour commenter.

Réponse acceptée

Bruno Luong
Bruno Luong le 24 Oct 2018
% EL parameters
a = 148
b = 225
% Group Z/pZ parameter
p = 5003
% Point
G = [1355,2421];
% Compute G2 = 2*G
x = G(1);
y = G(2);
d = mod(2*y,p);
[~,invd,~] = gcd(d,p);
n = mod(3*x*x + a,p);
lambda = mod(n*invd,p);
x2 = mod(lambda*lambda - 2*x,p);
y2 = mod(lambda*(x-x2)-y,p);
G2 = [x2 y2]
G2 =
533 2804
  6 commentaires
Maria Hameed
Maria Hameed le 26 Oct 2018
% EL parameters a = 148 b = 225 % Group Z/pZ parameter p = 5003 % Point for i=1:256 Gi = [1355,2421]; % Compute G(i+1) = 2*Gi xi = Gi(1); yi = Gi(2); d = mod(2*yi,p); [~,invd,~] = gcd(d,p); n = mod(3*xi*xi + a,p); lambda = mod(n*invd,p); x2 = mod(lambda*lambda - 2*xi,p); y2 = mod(lambda*(xi-x(i+1))-y,p); G(i+1) = [x(i+1) y(i+1)]
% Compute G(i+2) = G(i+1)+Gi
d1 = mod((x(i+1)-xi),p); [~,invd,~] = gcd(d1,p); n1 = mod((y(i+1)-yi),p); lambda = mod(n1*invd,p); x(i+2) = mod(lambda*lambda - x-x(i+1),p); y(i+2) = mod(lambda*(x-x(i+2))-y,p); G(i+2) = [x(i+2) y(i+2)] end for sir how can I combine theses codes for point doubling ?
Bruno Luong
Bruno Luong le 26 Oct 2018
Your code is incomplete, isn't it? I post the answer below.

Connectez-vous pour commenter.

Plus de réponses (4)

Bruno Luong
Bruno Luong le 26 Oct 2018
EL = struct('a', 148, 'b', 225, 'p', 5003);
% Point
G = [1355,2421];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
invd = itab(mod(d,p)); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
yr = lambda*(xp-xr) - yp;
R = mod([xr, yr],p);
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
  11 commentaires
Bruno Luong
Bruno Luong le 21 Fév 2022
As stated in my code, for illustration only, there is no careful check for overflow of calculation. This code is more robust but still not bulet-proof
EL = struct('a', 0, 'b', 2, 'p', 957221);
% Point
G = [762404,61090];
% Compute C*G for C=1,2,...,maxC
maxC = 5003;
maxk = nextpow2(maxC);
CG = zeros(maxC,2);
j = 1;
CG(j,:) = G;
G2k = G;
% precompute the inverse of 1...p-1, and stores in table itab
p = EL.p;
itab = p_inverse(1:p-1, p);
for k=1:maxk
for i=1:j-1
j = j+1;
CG(j,:) = EL_add(G2k,CG(i,:),EL,itab);
if j == maxC
break
end
end
if j == maxC
break
end
G2k = EL_add(G2k,G2k,EL,itab);
j = j+1;
CG(j,:) = G2k;
end
CG
function ia = p_inverse(a, p)
[~,ia] = gcd(a,p);
end
function R = EL_add(P,Q,EL,itab)
% R = ELadd(P,Q,EL,itab)
% Perform addition: R = P + Q on elliptic curve
% P, Q, R are (1x2) arrays of integers in [0,p) or [Inf,Inf] (null element)
% (EL) is a structure with scalar fields a, b, p.
% Together they represent the elliptic curve y^2 = x^3 + a*x + b on Z/pZ
% p is prime number
% itab is array of length p-1, inverse of 1,....,p-1 in Z/pZ
% WARNING: no overflow check, work on reasonable small p only
if ELiszero(P)
R = Q;
elseif ELiszero(Q)
R = P;
else
p = EL.p;
xp = P(1);
yp = P(2);
xq = Q(1);
yq = Q(2);
d = xq-xp;
if d ~= 0
n = yq-yp;
else
if yp == yq
d = 2*yp;
n = 3*xp*xp + EL.a;
else % P == -Q
R = [Inf,Inf];
return
end
end
d = mod(d,p);
n = mod(n,p);
invd = itab(d); % [~,invd,~] = gcd(d,p);
lambda = mod(n*invd,p); % slope
xr = lambda*lambda - xp - xq;
xr = mod(xr,p);
yr = lambda*(xp-xr) - yp;
yr = mod(yr,p);
R = [xr, yr];
end
end
function b = ELiszero(P)
% Check if the EL point is null-element
b = any(~isfinite(P));
end
Ammy
Ammy le 21 Fév 2022
Thank you very much@Bruno Luong.

Connectez-vous pour commenter.


KSSV
KSSV le 23 Oct 2018
G=[1355,2421] ;
P = 1:1:5003 ;
Q = P'.*G ;
  8 commentaires
Walter Roberson
Walter Roberson le 24 Oct 2018
Should the definition of s really divide by 2 and multiply the results by y, or should it be dividing by (2*y)?
Maria Hameed
Maria Hameed le 24 Oct 2018
it should divide (2*y) and this is actually as s=[(3*x^2+a)modp]*[(2*y)^-1 mod p] and inverse of (2*y) should be found by extended euclidean algo

Connectez-vous pour commenter.


madhan ravi
madhan ravi le 23 Oct 2018
double(points) %like this?
  1 commentaire
Maria Hameed
Maria Hameed le 24 Oct 2018
yup note that this point doubling is of elliptic curve not simple point multiplication

Connectez-vous pour commenter.


Bruno Luong
Bruno Luong le 23 Oct 2018
I reiterate my answer previously, you need first to program the "+" operator for EL, then doubling point 2*Q is simply Q "+" Q.
Formula for addition in EC group in the section Elliptic Curves over Zp of this document

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by