Integrating second order differential equation BVP error
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I get the error "Warning: Explicit solution could not be found." when trying to integrate this BVP.
I've attached a picture of the DE here.
https://imgur.com/a/j6eJERx
Why is it failing?
syms y(x)
epsilon = .0001
ode = epsilon*diff(y,x,2)-(3*x+2)*diff(y,x)+y^2 == 0;
cond1 = y(0) == -3/log(2);
cond2 = y(1) == 1;
conds = [cond1 cond2];
ySol(x) = dsolve(ode,conds)
end
0 commentaires
Réponse acceptée
Stephan
le 1 Nov 2018
Modifié(e) : Stephan
le 1 Nov 2018
Hi,
i dont think that there is a analytical solution to this problem. You can solve this numeric by using symbolic Toolbox for creating a function handle to this in the first step (or you do this by hand):
syms y(x)
epsilon = .0001
ode = odeToVectorField((epsilon*diff(y,x,2)-(3*x+2)*diff(y,x)+y^2 == 0),y(x));
ode_fun = matlabFunction(ode,'Vars',{'x','Y'})
The code above gives you a system of first order odes and a function handle:
ode =
Y[2]
10000*(3*x + 2)*Y[2] - 10000*Y[1]^2
vars =
y
Dy
ode_fun =
function_handle with value:
@(x,Y)[Y(2);Y(1).^2.*-1.0e4+(x.*3.0+2.0).*Y(2).*1.0e4]
Using the vars Information you know that y=Y(1) and Dy=Y(2). Then you can formulate the problem for numeric solving by bvp5c:
odefun = @(x,Y)[Y(2);Y(1).^2.*-1.0e4+(x.*3.0+2.0).*Y(2).*1.0e4];
bcfun = @(ya,yb)[ya(1); yb(1)-1];
x = linspace(0,1,10);
yinit = [0 0];
solinit = bvpinit(x,yinit);
sol = bvp5c(odefun,bcfun,solinit);
% plot function graph of y
subplot(2,1,1)
plot(sol.x,sol.y(1,:),'r','lineWidth',2)
xlim([0.9998 1])
% plot first derivative of y
subplot(2,1,2)
plot(sol.x,sol.y(2,:),'g','lineWidth',2)
xlim([0.9998 1])
Note that the x-values of the plot are not from 0...1, due to the function would look like a step function in x=1 otherwise.
Best regards
Stephan
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!