Why the neural network creates the same output values for the different inputs?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I created a neural network model as you can see the model code. Firstly I normalized the data between 0 and 1, then I divided the input and target data for test and validation. I see that the all validation output values (y) is the same. I checked the normalized validation input data, it doesn't contain an error.
(Xtn: Normalized input test values, Xvn: Normalized input validation values, Ytn: Normalized target test values, Y:Normalized validation output values, Ye: Denormalized validation output values)
Can you help me?
Data=xlsread('Data31.10.xlsx'); Input=Data(:,4:12); Target=Data(:,end);
I=Input';
T=Target';
A=minmax(I); Min=A(:,1); Max=A(:,2); Fark=Max-Min; In=(I-Min)./Fark;
Tmin=min(T); Tmax=max(T);
nofdata=size(In,2);
ntd=round(nofdata*trainingrate);
Xtn=In(:,1:ntd);
Xvn=In(:, ntd+1:end);
Yt=T(1:ntd);
Yv=T(ntd+1:end);
Ytn=(Yt-Tmin)./(Tmax-Tmin);
net=newff(Xtn, Ytn, [n1,n2], {'logsig', 'logsig', 'logsig'}, 'trainlm');
net=train(net,Xtn,Ytn);
y=sim(net,Xvn);
ye=y*(Tmax-Tmin)+Tmin;
3 commentaires
Greg Heath
le 5 Nov 2018
Reply by Perihan Bilgeç
size(I) = [9 1756 ]
size(T) = [1 1756 ]
Réponses (1)
Greg Heath
le 7 Nov 2018
Where is your training data?
Typically, the data division is
train/val/test = 70%/15%/15%
Hope this helps,
Greg
Voir également
Catégories
En savoir plus sur Define Shallow Neural Network Architectures dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!