Maximum likeligood estimatin of GARCH(1,1) model
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I have a problem in estimating GARCH(1,1) with maximum likelihood method. I hope anyone can help and give me an advice what's wrong with the following code.
%---------------------------------------- % main code with function: garch11.like param = [0.001; 0.001; 0.2; 0.6]; distr = 'normal'; T=1000; data = garch11_sim(param, distr, T);
X = ones(T,1); dataX = [data, X];
k=1; % parameter number in mean equation p=1; q=1;
lowerBounds = []; % Linear inequalities captured, c+p+q
upperBounds = []; % as lower bounds constraints.
SumConA = [-eye(k+1+p+q); ... zeros(1,k+1) ones(1,p) ones(1,q)];
SumConB = [inf;zeros(1+p+q,1); 1];
options = optimset('fmincon');
options = optimset(options , 'TolFun' , 1e-006);
options = optimset(options , 'Display' , 'iter');
options = optimset(options , 'Diagnostics' , 'on');
options = optimset(options , 'LargeScale' , 'off');
options = optimset(options , 'MaxFunEvals' , 400*(2+p+q));
SumConB = SumConB - [zeros(k+1+p+q,1); 1]*2*optimget(options, 'TolCon', 1e-6);
starting = [0.001; 0.0013; 0.2; 0.5];
[parameters, LLF, EXITFLAG, OUTPUT, LAMBDA, GRAD] = fmincon('garch11_like',starting,SumConA,SumConB,[],[],lowerBounds,upperBounds,[],options, dataX, distr);
%----------------------------------------------------
function loglike = garch11_like(param, data, distr)
T = size(data,1); et = data(:,1) - data(:,2:end)*param(1);
ht=zeros(T,1);
ht(1) = param(2)/(1-param(3)-param(4));
for t=2:T; ht(t) = param(2) + param(3)*(et(t-1)^2)+ param(4)*ht(t-1); end
switch distr
case 'normal'
loglike0 = -0.5*log(2*pi) - 0.5*(log(ht)) - 0.5*((et.^2)./ht);
loglike = sum(loglike0);
case 'tdis'
v=param(5);
loglike0 = log(gamma(0.5*(v+1))) - log(gamma(v/2)) - 0.5*log(v*pi*ht) - (v+1)/2*log(1+(et.^2)./(v*ht));
loglike = sum(loglike0);
end
loglike = -loglike;
Réponses (0)
Voir également
Catégories
En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!