N11=1/sqrt(1^2+3^2+1^2)=1/sqrt11eigenvalues and eigenvector manual calculation
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
muhammad iqbal habibie
le 19 Nov 2018
Commenté : Manoj Samal
le 3 Déc 2020
I have a matrix 2x2, for example A= [ 0.064911 3.276493; 3.276493 311.2073]. I would like to calculate the eigenvalues and eigenvectors. I have calculated the eigenvalues by manual and match it with matlab is match. the manual of eigenvalues :
eigenvalues were calculated by |A- λ * I|=0
so I received the eigenvalues (0.0304;311.2418). Now I am trying to calculated the eigenvectors that I found the way like this
B= eig(A) ; this is calculating the eigenvalues
(v,d)=eig(A)
I got v= (-0.9999 0.0105; 0.0105 0.9999) and d = ( 0.0304 0 ; 0 311.2418).
I would like to ask how to calculate manual of matrix v? Hope someone can help. Thank you.
1 commentaire
Manoj Samal
le 3 Déc 2020
By using (v,d)=eig(A) gives v= normalised eigen vector(not eigen vector) and d=eigen values
N11=1/sqrt(1^2+3^2+1^2)=1/sqrt11N21=3/ sqrt(3^2+2^2+1^2)=1/sqrt14 and so on....
Réponse acceptée
Torsten
le 19 Nov 2018
Modifié(e) : Torsten
le 19 Nov 2018
By solving
(A-lambda1*I)*v1 = 0
and
(A-lambda2*I)*v2 = 0
You could use
v1 = null(A-lambda1*I)
and
v2 = null(A-lambda2*I)
to achieve this.
Best wishes
Torsten.
7 commentaires
Torsten
le 19 Nov 2018
([0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 0.0304])*[v11; v21]=[0;0]
Solve for v1=[v11;v21] and normalize the vector to get the first column of v.
([0.064911 3.276493; 3.276493 311.2073] - [311.2418 0; 0 311.2418])*[v12;v22]=[0;0]
Solve for v2=[v12;v22] and normalize the vector to get the second column of v.
Plus de réponses (1)
Bruno Luong
le 19 Nov 2018
No cheating, this applies for 2x2 only
A= [ 0.064911 3.276493;
3.276493 311.2073];
lambda=eig(A); % you should do it by solving det(A-lambda I)=0
V = ones(2);
for k=1:2
B = A-lambda(k)*eye(size(A));
% select pivot column
[~,j] = max(sum(B.^2,1));
othercolumn = 3-j;
V(j,k) = -B(:,j)\B(:,othercolumn);
end
% Optional: Make eigenvectors l2 norm = 1
V = V ./ sqrt(sum(V.^2,1));
disp(V)
2 commentaires
Torsten
le 21 Nov 2018
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=2ahUKEwjF8uef_-TeAhUJ3qQKHZB3BSsQFjAIegQIBxAC&url=http%3A%2F%2Fwww-2.rotman.utoronto.ca%2F~hull%2Fsoftware%2FEigenvalue%26vector.xls&usg=AOvVaw2og1xfxU96ox_lDmx3k6GB
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!