Effacer les filtres
Effacer les filtres

Time derivative of parameters within ODE solvers

2 vues (au cours des 30 derniers jours)
Seyed Ali Baradaran Birjandi
Modifié(e) : Torsten le 23 Nov 2018
I have an ODE which has a parameter whose 1st and 2nd order time derivatives are also included in the ODE:
function dy = ODE(t,y)
f1 = myfun(y(t));
dy = y + f1 + df1/dt + ddf1/dt^2;
end
Unfortunately, the function of analytical derivatives of myfun is not available. Therefore, df1 and ddf1 can be computed numerically, only. Given that the time step in Matlab ode solvers is not fixed, I wonder if there is a way to numerically compute df1 and ddf1.

Réponse acceptée

Torsten
Torsten le 23 Nov 2018
Modifié(e) : Torsten le 23 Nov 2018
function dy = ODE(t,y)
dt = 1e-8;
fm = myfun(t-dt);
f = myfun(t);
fp = myfun(t+dt);
df = (fp - fm) / (2 * dt);
ddf = (fp - 2 * f + fm) / dt^2;
dy = y + f + df + ddf;
end
  6 commentaires
Seyed Ali Baradaran Birjandi
It depends on y only, i.e: y^2.
Torsten
Torsten le 23 Nov 2018
Modifié(e) : Torsten le 23 Nov 2018
Let
z = f(y)
the value that "myfun" returns for argument y.
Then
dz/dt = df/dy * dy/dt
d^2z/dt^2 = d^2f/dy^2 * (dy/dt)^2 + df/dy * d^2y/dt^2
Inserting into your differential equation gives
dy/dt = y + f + df/dy * dy/dt + d^2f/dy^2 * (dy/dt)^2 + df/dy * d^2y/dt^2
or
df/dy * d^2y/dt^2 + (df/dy - 1) * dy/dt + d^2f/dy^2 * (dy/dt)^2 + y + f = 0
Now you can approximate df/dy and d^2f/dy^2 as I suggested above and solve the system (z1 = y, z2 = dy/dt)
z1' = z2
z2' = -((df/dy - 1) * z2 + d^2f/dy^2 * (z2)^2 + z1 + f)/(df/dy)
using ODE45, e.g.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Tags

Produits


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by