How to solve a complex-valued equation
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm trying to use fzero, but it seems that it can't handle solving for a variable that's complex. Here's my code:
E = 169e9; % Young's Modulus of Silicon [N/m^2] (Assuming one that's isotropic)
W = 2e-6; % Width of Cantilever Beam [m]
H = 2e-6; % Height of Cantilever Beam [m]
L = 5e-6; % Length of Cantilever Beam [m]
V_dc = 5; % DC Voltage [V]
V_ac = 2; % AC Voltage Magnitude [V]
omega = [80e6, .01e6, 110e6]; % Angular Frequency of AC Voltage [rad/s]
g = 5e-6; % Initial Gap between Cantilever Beam and Substrate/Switch Terminal [m]
A = W * H; % Overlap Area between Cantilever Beam and Electrodes [m^2]
e_0 = 8.854e-12; % Permittivity of Free Space [F/m]
k = (E * W * H ^ 3) / (4 * L ^ 3); % Spring Constant of Cantilever Beam [N/m]
% Setting dU/dx equal to kx, and solving for x
for k1 = 1:length(omega)
omega_val = omega(k1);
f = @(x) (1 / 2) * 1i * omega_val * ((e_0 * A) / (g - x) ^ 2) * (V_dc + V_ac) ^ 2 - k * x; % Setting up equation to solve
x(k1) = fzero(f, 0);
end
Basically, omega is a vector of some length with real values, and all the other variables are real as well. But since the imaginary number is present in the equation, the value for x that I'm looking for should be imaginary as well. How would I go about doing this? Thanks in advance.
4 commentaires
Bruno Luong
le 2 Déc 2018
"But since the imaginary number is present in the equation, the value for x that I'm looking for should be imaginary as well. "
Not really, you barely multiply your entire relevant expression by 1/2*1i.
If you solve f(x) = 0, it does not change anything fundamental after multiplying the equation by constant that is not equal to 0, where as it's complex, imaginary or real.
Secondly
((e_0 * A) / (g - x) ^ 2)
never vanishes unless |x| = infinity
Réponse acceptée
Bruno Luong
le 2 Déc 2018
Modifié(e) : Bruno Luong
le 2 Déc 2018
So your equation is of the form
a / (g - x)^2 = k* x
Just multiply by (g - x)^2 in both sides, you'll get
a = (g - x)^2 * k* x
k*x^3 - 2*k*g*x^2 + k*g^2*x - a = 0
The 3 solutions (for each omega) can be obtained by
for k1 = 1:length(omega)
omega_val = omega(k1);
a = (1 / 2) * 1i * omega_val * (e_0 * A) * (V_dc + V_ac)^2;
x = roots([k,-2*g*k,k*g^2,-a])
end
This gives you 3 solutions, I don't know which one you want to pick or not.
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!