Finding particular solution to 3x3 matrix using undetermined coefficients

3 vues (au cours des 30 derniers jours)
Hi all,
I am trying to find the particular solution to the following system of equations:
function xprime = A(t,x)
eqn1 = - x(1)*(15/4) == -1575;
eqn2 = (15/4)*x(1) - (5/12)*x(2);
eqn3 = (5/12)*x(2) - (5/14)*x(3);
Below I went about finding my general solution:
end
A = sym([-15/4,0,0;15/4,-5/12,0;0,5/12,-5/14]);
>> Id3 = sym([1,0,0;0,1,0;0,0,1]);
>> syms lambda
>> B = lambda*Id3 - A
B =
[ lambda + 15/4, 0, 0]
[ -15/4, lambda + 5/12, 0]
[ 0, -5/12, lambda + 5/14]
>> p=det(B)
p =
lambda^3 + (95*lambda^2)/21 + (1025*lambda)/336 + 125/224
>> evs = solve(p)
evs =
-15/4
-5/12
-5/14
>> null(evs(1)*Id3-A)
ans =
152/21
-57/7
1
And now, since the system is non-homogenous...this would give me
[0,0,0] = [(-15/4), 0, 0 ; (15/4), (-5/12), 0 ; 0, (5/12) , (-5/14)] x [a1, b1, c1] + [1575, 0, 0]
This results in the numbers that I was looking for.... Xp: 420, 3780, 4410.
My question is...how can I go about this above equation by way of undetermined coefficients in matlab?
Thanks for any advice you have

Réponse acceptée

madhan ravi
madhan ravi le 9 Déc 2018
Read about fsolve():
Roots=vpa(fsolve(@solls,[0;0;0])) %function call
function eqn=solls(x) %function definition
eqn(1) = - x(1)*(15/4) + 1575;
eqn(2) = (15/4)*x(1) - (5/12)*x(2);
eqn(3) = (5/12)*x(2) - (5/14)*x(3);
end
  2 commentaires
spcrooks
spcrooks le 9 Déc 2018
Ah...I was looking in all the wrong places. fsolve makes sense, now that I am looking at it.
Thank you for your time, madhan.

Connectez-vous pour commenter.

Plus de réponses (1)

Bruno Luong
Bruno Luong le 9 Déc 2018
Guys, this is a linear system, why using FSOLVE?
>> [-15/4 0 0; 15/4 -5/12 0; 0 5/12 -5/14]\[-1575; 0; 0]
ans =
420
3780
4410
>>

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by