How to delete the following items([yr , y3 ,y4 ,y11, y111, yr1 ,yr11, yn1 ,yn11, fn, fnr, fn1, fn2])

10 vues (au cours des 30 derniers jours)
syms y yr y1 y2 y3 y4 y11 y111 yr1 yr11 yn1 yn11 h fn fnr fn1 fn2
r=1.7585889236061132562137339518147
eq1=-y2-(r - 2)/r*y+ 2/(r*(r - 1))*yr+ (2*r - 4)/(r - 1)*y1 -(h^3*(r^4 - 8*r^3 + 22*r^2 - 23*r + 6))/(120*r)*fn+ (h^3*(- r^2 + 2*r + 3))/(60*r)*fnr -(h^3*(- r^3 + 4*r^2 + 9*r - 26))/60*fn1+ (h^3*(- r^3 + 2*r + 1))/120*fn2
eq2=-h*y3-(r - 3)/r*y+ 3/(r*(r - 1))*yr+ (r - 4)/(r - 1)*y1 -(h^3*(3*r^4 - 24*r^3 + 66*r^2 - 67*r + 12))/(240*r)*fn -(h^3*(r^4 - 5*r^3 + 5*r^2 + 5*r - 4))/(40*r*(r^2 - 3*r + 2))*fnr -(h^3*(- 3*r^4 + 15*r^3 + 15*r^2 - 137*r + 116))/(120*(r - 1))*fn1+ (h^3*(- r^4 + 2*r^3 + 2*r^2 + 3*r - 12))/(80*(r - 2))*fn2
eq3=-h^2*y4+2/r*y+ 2/(r*(r - 1))*yr -2/(r - 1)*y1+ (h^3*(- r^4 + 8*r^3 - 22*r^2 + 18*r + 5))/(120*r)*fn -(h^3*(r^4 - 5*r^3 + 5*r^2 + 5*r + 5))/(60*r*(r^2 - 3*r + 2))*fnr -(h^3*(- r^4 + 5*r^3 + 5*r^2 - 75*r + 77))/(60*(r - 1))*fn1+ (h^3*(- r^4 + 2*r^3 + 2*r^2 + 42*r - 81))/(120*(r -2))*fn2
eq4=-h*y11-(r - 1)/r*y+ 1/(r*(r - 1))*yr+ (r - 2)/(r - 1)*y1 -(h^3*(r^4 - 8*r^3 + 22*r^2 - 21*r + 6))/(240*r)*fn+ (h^3*(- r^2 + 2*r + 3))/(120*r)*fnr-(h^3*(- r^3 + 4*r^2 + 9*r - 8))/120*fn1 -(h^3*(r^3 - 2*r + 1))/240*fn2
eq5=-h^2*y111+2/r*y+ 2/(r*(r - 1))*yr -2/(r - 1)*y1 -(h^3*(r^4 - 8*r^3 + 22*r^2 - 28*r + 10))/(120*r)*fn -(h^3*(r^4 - 5*r^3 + 5*r^2 + 5*r - 10))/(60*r*(r^2 - 3*r + 2))*fnr -(h^3*(- r^4 + 5*r^3 + 5*r^2 - 35*r + 22))/(60*(r - 1))*fn1+ (h^3*(- r^4 + 2*r^3 + 2*r^2 - 8*r + 4))/(120*(r - 2))*fn2
eq6=-h*yr1-(r - 1)/r*y+ (2*r - 1)/(r*(r - 1))*yr -r/(r - 1)*y1+ (h^3*(2*r^4 - 13*r^3 + 28*r^2 - 22*r + 5))/240*fn+ (h^3*(4*r^3 - 15*r^2 + 10*r + 5))/(120*(r - 2))*fnr+(h^3*r*(- 2*r^3 + 7*r^2 + 2*r - 3))/120*fn1+ (h^3*r*(2*r^4 - 5*r^3 + 2*r^2 + 2*r - 1))/(240*(r - 2))*fn2
eq7=-h^2*yr11-2/r*y+ 2/(r*(r - 1))*yr -2/(r - 1)*y1+ (h^3*(4*r^4 - 22*r^3 + 38*r^2 - 22*r + 5))/(120*r)*fn -(h^3*(- 14*r^4 + 55*r^3 - 55*r^2 + 5*r + 5))/(60*r*(r^2 - 3*r + 2))*fnr -(h^3*(4*r^4 - 15*r^3 + 5*r^2 + 5*r - 3))/(60*(r - 1))*fn1+ (h^3*(4*r^4 - 8*r^3 + 2*r^2 + 2*r - 1))/(120*(r - 2))*fn2
eq8=-h*yn1-(r + 1)/r*y -1/(r*(r - 1))*yr+ r/(r - 1)*y1+ (h^3*(r^3 - 8*r^2 + 22*r - 5))/240*fn+ (h^3*(r^3 - 5*r^2 + 5*r + 5))/(120*(r^2 - 3*r + 2))*fnr+ (h^3*r*(- r^3 + 5*r^2 + 5*r - 3))/(120*(r - 1))*fn1 -(h^3*r*(- r^3 + 2*r^2 + 2*r - 1))/(240*(r - 2))*fn2
eq9=-h^2*yn11-2/r*y+ 2/(r*(r - 1))*yr -2/(r - 1)*y1 -(h^3*(r^4 - 8*r^3 + 22*r^2 + 22*r - 5))/(120*r)*fn -(h^3*(r^4 - 5*r^3 + 5*r^2 + 5*r + 5))/(60*r*(r^2 - 3*r + 2))*fnr -(h^3*(- r^4 + 5*r^3 + 5*r^2 + 5*r - 3))/(60*(r - 1))*fn1+ (h^3*(- r^4 + 2*r^3 + 2*r^2 + 2*r - 1))/(120*(r - 2))*fn2
  1 commentaire
Walter Roberson
Walter Roberson le 11 Déc 2018
Eliminate them how? They do not appear to be used on any line other than their defining line.

Connectez-vous pour commenter.

Réponses (2)

Mark Sherstan
Mark Sherstan le 11 Déc 2018
Refer to the documentation located here for examples and more info. Your answer should look something like this as I dont know what your final system is.
eliminate(put your final system here,[y3,y4,y11,y111,yr1,yr11,yn1,yn11])
  7 commentaires
sadeem alqarni
sadeem alqarni le 15 Déc 2018
I downloaded version 2018 and found that the (eliminate) command already exists. Thank you so much
Walter Roberson
Walter Roberson le 17 Déc 2018
I am not sure if this topic is complete?

Connectez-vous pour commenter.


Walter Roberson
Walter Roberson le 12 Déc 2018
syms lambda y yr y1 y2 y3 y4 y11 y111 yr1 yr11 yn1 yn11 h fn fnr fn1 fn2
eqn = [fn == -lambda^3* y;
fnr == -lambda^3 *yr;
fn1 == -lambda^3 *y1;
fn2 == -lambda^3 *y2;
y2 ==(11873623479661898*h*yr1)/6751790211048401 - (6751790211048399*yr)/6751790211048401 - (10440411367201446*h^2*yr11)/6751790211048401 - (2889565507028359*h^3*lambda^3*y)/356208704389857024 - (7342686635091253*h^3*lambda^3*y1)/16005728964417182 + (5339343182411891*h^3*lambda^3*y2)/35562696925852424 - (8706461403438649*h^3*lambda^3*yr)/14763750126578948
y3 ==(6751790211048400*yr)/6751790211048401 - (5121833268613498*h*yr1)/6751790211048401 + (1942682993063747*h^2*yr11)/6751790211048401 - (1257507243186803*h^3*lambda^3*y)/1424834817559428096 + (1792921480642179*h^3*lambda^3*y1)/128045831715337456 - (3830792419005201*h^3*lambda^3*y2)/195594833092188320 + (584804158233843*h^3*lambda^3*yr)/7381875063289474
y4 ==(43167539827785635825456172186119148836985614192053456001506197137954110424426612991748655767304149263607370309797879857807360*yr - 25877663013519854714470496995117795354155173250789893980969949273885414104510842702177789859752182314519978124787172805443584*h*yr1 + 28793743615551275434440862209221214364974544635519705088102372831449747642274602026677149127351489284201642179293173138849792*h^2*yr11 + 564074675178466355101711290800115861817243764985287256222857716345096203958245125626607547653918459395601616191204104339456*h^3*lambda^3*y + 15832787617005697588434375587757371943889008049899387788824557377011019590949034231422318079968551816365187213551983537422336*h^3*lambda^3*y1 - 2319610773252914476123117303456760589342682505662780858848875411593890375817837452211793010584702974409979367137796381736960*h^3*lambda^3*y2 + 10654903642375954129417618567659624353082040712631808656956086399963989953536858084783926616542748322610469617555153918885888*h^3*lambda^3*yr)/(50036294386949720075122873848065946429852285073834511840830933442747581829881736280125487071322810498157168988377858038562816*h)
y11 ==-(184941409074869723143011153977547744705000799495528952419552992180316180577386501665091027843353175309357741831490785796685824*yr - 325235913515173100637850865702098903551699562142465396192194404494983677846338253725708812066911190472255653342320174164869120*h*yr1 + 204669159154556337715365818206448148121157905497136549571998858900754343915908961575983565701637326134212774971626273210630144*h^2*yr11 + 2544239049986467843275698707469541587011076301108202518846002894457145153718354182392064237859142356152722923878193259610112*h^3*lambda^3*y + 56960355964623952886449815035122011802205454531308046094532329690451260856351545014108571256622324380312126963300571862269952*h^3*lambda^3*y1 - 10867289606177968030398005216262262624314164827051937911138705883308322424174554035003444561475672567602097329711242100604928*h^3*lambda^3*y2 + 57321932556903558062451263007272771674558625698224552077575708460206921639867262182843376350264452700814000762954736004497408*h^3*lambda^3*yr)/(81308978378793293947803378616190549003769664850312568053508992390304885119912335689099403933595345327655900413729667796697088*h^2)
y111 ==(4898080204627391*yr)/6751790211048401 + (4889870827304708*h*yr1)/6751790211048401 - (2669679394946458*h^2*yr11)/6751790211048401 - (6360597615414401*h^3*lambda^3*y)/2849669635118856192 - (6045437207393777*h^3*lambda^3*y1)/48017186893251544 + (7473264660850309*h^3*lambda^3*y2)/183370156023926560 - (1595109723498111*h^3*lambda^3*yr)/9736262791308784
yr1 ==-(3656952743101927561873653388742649804572793146241237208560353764920619345312510488995751047097418440437207549211760709683551898108472363045856625779802112*yr - 9021305042894063509662111463324531926608641864842826517956074152070290216294230272796622879875699046835427066502247989166870185429774054007066284812926976*h*yr1 + 5029500188048214479556985278091714608080330818463726410165702687652766951595717627870238826463288790834676722511765881545798892345080349410935579097432064*h^2*yr11 + 29843458106253468279896449564935568327098082672813290340772153968234129022336404918653394675006606293830230778041522366235830359941216129630143416107008*h^3*lambda^3*y + 1675847518853807729553772716414912346139041058758022076318220032935667060675256165414685723350885189837487011941469304161737101696313566977379650911600640*h^3*lambda^3*y1 - 528226690998423947287456530198178660967928782233914394961892269068436873409947017852795681116900697111069743049349180859211887363868041682655946710450176*h^3*lambda^3*y2 + 2212842834504469631040082841046644325316210504684789319517696385877979379759791070866324138643353194742598897461893965137675446634147851503383627765383168*h^3*lambda^3*yr)/(2590228454724021167298540239562159380210594447176338763657167365081379551368213541236473496190485690292166627866427246740419000711665995158325912842272768*h)
yr11 ==-((4483276372902422121252827339784500974390938166325802075449289330620287050723124856599873348751764684756930639853833905002632079350743565336576*yr)/6960333539652369 - (7884240170851191051670901276753862560541347708215063109845977705700858654477343345765648733312436288457892430756205821040655020076806659112960*h*yr1)/6960333539652369 + (5820136678752962014731900670872368723684821573546161455974874777304286876135288935641464495235013666284891143121407819587699946046962926616576*h^2*yr11)/6960333539652369 + (36855892950410567687688032341209926912370306203108056850434388327089196295721764000773191995205554174505402843473570613037644228004044341248*h^3*lambda^3*y)/6960333539652369 + (2051864898530281139352872432993150367700482399240988954374153250078933381979672371302699918186693920515297168145855293428675277913431230906368*h^3*lambda^3*y1)/6960333539652369 - (594516744422630071479400031212554948307672310904984072885673008613003945752567242071812444717390425243751519247393786011866532357077278392320*h^3*lambda^3*y2)/6960333539652369 + (2772230651025598422384595569630867544018311195714175579549498029253878601879598597155117881002906166340333653510425700667432620542834602147840*h^3*lambda^3*yr)/6960333539652369)/(81308978378793293947803378616190549003769664850312568053508992390304885119912335689099403933595345327655900413729667796697088*h^2)
yn1 ==-((10089458209651429634349407042754439154023982561846151652927777619167270954725918561245531100486776970906198655872121936745784734007963959443252865708324394131405660198273024*yr)/10040581717853480547665465150553 - (18416528412108833831970843480151705099149617314448866767380108038599393049489655797240902251440471306113391660788088082978674081157430006261534277701781964727442429557342208*h*yr1)/10040581717853480547665465150553 + (15509059322515879541487087184376114237383069093407429014061866422852064703944913737964892469356535977842241695378082126526635021266358699576036387759819492017138049136721920*h^2*yr11)/10040581717853480547665465150553 + (133737146246997048055656138391986356990304748578754718264431563700982856487768510452868020900347193799127200137324179322046583951767106289907831006976955874759133863346176*h^3*lambda^3*y)/10040581717853480547665465150553 + (5281242795924637016904503232340138610700336217981118661131280595788763740498073021689300304719984384704088842153183447808668479365921599535790221142122493355414520026103808*h^3*lambda^3*y1)/10040581717853480547665465150553 - (1311381349264776716130409994241646014607549823027166808001430537759678355915467538085622405042110029710789333488338905603985242532264089317313398086850728516524448361218048*h^3*lambda^3*y2)/10040581717853480547665465150553 + (6739894048643283664780508899940759266683384143239594983655920137934231621389524734286434984414987317773232508555523750210490232068690780311689497821156614252894103411884032*h^3*lambda^3*yr)/10040581717853480547665465150553)/(67059755933444642789957577328069600325395872462837409421483070028311630099623020462997353045366833109671298039887005256129957923299044360192*h)
yn11 ==(267096347221571*h*lambda^3*y)/802700718349700 - ((4483276372902422121252827339784500974390938166325802075449289330620287050723124856599873348751764684756930639853833905002632079350743565336576*yr)/6960333539652369 - (7884240170851191051670901276753862560541347708215063109845977705700858654477343345765648733312436288457892430756205821040655020076806659112960*h*yr1)/6960333539652369 + (5820136678752962014731900670872368723684821573546161455974874777304286876135288935641464495235013666284891143121407819587699946046962926616576*h^2*yr11)/6960333539652369 + (36855892950410567687688032341209926912370306203108056850434388327089196295721764000773191995205554174505402843473570613037644228004044341248*h^3*lambda^3*y)/6960333539652369 + (2051864898530281139352872432993150367700482399240988954374153250078933381979672371302699918186693920515297168145855293428675277913431230906368*h^3*lambda^3*y1)/6960333539652369 - (594516744422630071479400031212554948307672310904984072885673008613003945752567242071812444717390425243751519247393786011866532357077278392320*h^3*lambda^3*y2)/6960333539652369 + (2772230651025598422384595569630867544018311195714175579549498029253878601879598597155117881002906166340333653510425700667432620542834602147840*h^3*lambda^3*yr)/6960333539652369)/(81308978378793293947803378616190549003769664850312568053508992390304885119912335689099403933595345327655900413729667796697088*h^2) + (2859387800382007*h*lambda^3*y1)/2135237996049923 + (1847821385343585*h*lambda^3*y2)/8154141252679642 - (1521963013521259*h*lambda^3*yr)/10878000162683446];
sol = solve(eqn, [y3, y4, y11, y111, yr1, yr11, yn1, yn11, y, y1, y2, yr, h]);
Because you have more equations than variables you wanted to eliminate, I had to choose a set of additional variables to solve for.
The above gives three solutions per variable. The variable I happened to look at, the three solutions were the same, but perhaps they were distinct for a different variable.
  2 commentaires
sadeem alqarni
sadeem alqarni le 15 Déc 2018
I have modified my question above
sadeem alqarni
sadeem alqarni le 15 Déc 2018
example:
syms x y
eqns = [2*x+y == 5, y-x == 1];
eliminate(eqns,x)

Connectez-vous pour commenter.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by