Optimize the Max Min over two sets for the given function
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello Guys,
I have two matricis and whose rows represents the extreme points and all the rows of are also the rows of i.e.,, and . I want to compute the square root of .
I want to solve the following problem.
Since is convex, and convexity is also preserved under minimization, so the function
is convex. Moreover, because every point can be represented as a convex combination of the set of extreme points of A,
which is attained at . Thus, we can compute the square root of
.
I hope the question is clear.
Thanks!
5 commentaires
Réponses (4)
Torsten
le 19 Déc 2018
Modifié(e) : Torsten
le 19 Déc 2018
max: eps
s.c.
[norm(a_j - sum_{i=1}^{i=k} lambda_i*b_i,2)]^2 >= eps (j=1,...,m)
sum_{i=1}^{i=k} lambda_i = 1
lambda_i >=0
where the a_j are the row vectors of the matrix A and the b_j are the row vectors of the matrix B.
Use "fmincon" to solve for the lambda_i and eps.
Or use "fminimax".
Best wishes
Torsten.
Bruno Luong
le 21 Déc 2018
Modifié(e) : Bruno Luong
le 21 Déc 2018
Not sure why this bla-bla about convex that makes your statement confusing. There is no continuous variable in the quantity f2 = max min | a-b |^2. It is straightforward calculation:
A=[2, 3; 1, 4; 3,1];
B=[1,2; 2,4];
n = size(A,2);
AA = reshape(A,[],1,n);
BB = reshape(B,1,[],n);
d2 = sum((AA-BB).^2,3);
f2 = max(min(d2,[],2),[],1)
8 commentaires
Bruno Luong
le 23 Déc 2018
Modifié(e) : Bruno Luong
le 23 Déc 2018
This answer is not longer valid since Sutan has editted and modified his question.
Bruno Luong
le 23 Déc 2018
Modifié(e) : Bruno Luong
le 15 Jan 2019
For ant row a_j, the inner equation
argmin_lambda || sum (lambda_i * b_i - a_j) ||^2
lambda >= 0
sum(lambda_i) = 1
can be solved using QUADPROG.
Then loop on j to find the max.
Example:
A = [1 2 4; 2 3 4; 1 2 3];
B = [1 2 4; 1 2 3];
[m,n] = size(A);
k = size(B,1);
H = B*B';
lb = zeros(1,k);
ub = inf(1,k);
f = nan(1,m);
lambda = nan(k,m);
Aeq = ones(1,k);
beq = 1;
C = -A*B';
for j=1:m
[x,fx] = quadprog(H, C(j,:), [], [], Aeq, beq, lb, ub);
lambda(:,j) = x;
f(j) = norm(B'*x - A(j,:)')^2; % == 2*fx + norm(A(j,:))^2
end
fmax = max(f)
4 commentaires
Sultan
le 15 Jan 2019
Modifié(e) : Sultan
le 16 Jan 2019
6 commentaires
Bruno Luong
le 16 Jan 2019
@Sultan: "I have optimal value 1.414213580747754"
I suspect that is the 2-norm value at the solution and not the square of the norm as defined in your question.
@Torten: Not pseudocode, but CVX:
Thanks
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!