Feature Extraction using deep autoencoder

5 vues (au cours des 30 derniers jours)
Satz92
Satz92 le 19 Déc 2018
Modifié(e) : arahiche le 28 Sep 2023
I have filtered my ecg signal of 108000*1 length and then divided into blocks using window size of 64 samples each. Now i need to extract feature from each window using deep autoencoder in MATLAB. any help or idea how can i perform this? Thanks in advance.

Réponses (1)

BERGHOUT Tarek
BERGHOUT Tarek le 11 Avr 2019
1) you must create a data set of this windows , dataset =[window1;window2; window3 ...................].
2) train these dataset with an AES.
3) the hidden layer will be your new extructed dataset;
  2 commentaires
Shankar Parmar
Shankar Parmar le 4 Mar 2022
Sir,
How can I extract this Hidden Layer in MATLAB using
trainAutoencoder command.
arahiche
arahiche le 28 Sep 2023
Modifié(e) : arahiche le 28 Sep 2023
To access the extracted features you need to use encode function.
here is an example;
hiddenSize = 100; % for example
AE_model = trainAutoencoder(Input_data,hiddenSize);
% you can view you model using this function
view(AE_model)
% To access the latent code generated
features = encode(AE_model,Input_data);

Connectez-vous pour commenter.

Catégories

En savoir plus sur Pattern Recognition and Classification dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by