I get this error:"This system does not seem to be linear."
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
When I try this code for simple pendulum, I get results:
syms pt(t) th(t)
m=1; l=0.5; g=9.81;
e1= diff(th)*(m*l^2)==pt;
e2= diff(pt)==-m*g*l*sin(th);
vars = [pt(t); th(t)];
V = odeToVectorField([e1,e2]);
M = matlabFunction(V, 'vars', {'t','Y'});
interval = [0 5];
y0 = [0; pi/4];
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
a= deval(ySol,tValues,1)/(m*l^2);
plot(tValues,a)
But when I use it for triple pendulum, it gives error. Couldn't solve it. Sorry if it's simple to figure out. Really new here.
syms theta1(t) theta2(t) theta3(t) p1(t) p2(t) p3(t)
m1=1; m2=1; m3=1; l1=1; l2=1;
l3=1; g=9.81; tau1=0; tau2=0; tau3=0;
I1=0; I2=0; I3=0;
e1= diff(theta1)*(I1+(m1+m2+m3)*l1^2)...
+diff(theta2)*(m2+m3)*l1*l2*cos(theta1-theta2)+...
diff(theta3)*m3*l1*l3*cos(theta1-theta3)==p1;
e2= diff(theta1)*(m2+m3)*l1*l2*cos(theta1-theta2)+...
diff(theta2)*(I2+(m2+m3)*l2^2)+...
diff(theta3)*m3*l2*l3*cos(theta2-theta3)==p2;
e3= diff(theta1)*m3*l1*l3*cos(theta1-theta3)+...
diff(theta2)*m3*l2*l3*cos(theta2-theta3)+...
diff(theta3)*(I3+m3*l3^2)==p3;
e4= diff(p1)== tau1-tau2-(m2+m3)*diff(theta1)*diff(theta2)*sin(theta1-theta2)...
-m3*diff(theta1)*diff(theta3)*l1*l3*sin(theta1-theta3)...
-(m1+m2+m3)*g*l1*cos(theta1);
e5= diff(p2)==tau2-tau3+(m2+m3)*diff(theta1)*theta2*l1*l2*sin(theta1-theta2)...
-m3*diff(theta2)*diff(theta3)*l2*l3*sin(theta2-theta3)...
-(m2+m3)*g*l2*cos(theta2);
e6= diff(p3)==tau3+(m3)*diff(theta1)*diff(theta3)*l1*l3*sin(theta1-theta3)...
+m3*diff(theta2)*diff(theta3)*l2*l3*sin(theta2-theta3)...
-m3*g*l3*cos(theta3);
vars= [theta1(t);theta2(t);theta3(t);p1(t);p2(t);p3(t)];
V = odeToVectorField([e1,e2,e3,e4,e5,e6]);
M = matlabFunction(V,'vars', {'t','Y'});
I have get that error in simple pendulum too, it was pt==diff(th)*(m*l^2), then I put the pt to the end, and it's solved. In triple pendulum I tried leaving diff(theta1) alone didn't work, tried to this code too, but nothing changed. Original equations are:

0 commentaires
Réponse acceptée
Torsten
le 4 Jan 2019
The product of differentials in your equations (diff(theta1)*diff(theta3), e.g.) makes it impossible to use ODE45.
I don't know if it can be applied directly, but ODE15I is the correct solver to use in this case.
Best wishes
Torsten.
4 commentaires
Torsten
le 4 Jan 2019
function main
y0 = [pi/2; pi/2; pi/2; 0; 0; 0];
yp0=[0; 0; 0; 0; 0; 0;];
[y0,yp0] = decic(@odennotfunatall,0,y0,[pi/2 pi/2 pi/2 0 0 0],yp0,[]);
[t,y] = ode15i(@odennotfunatall,[0 5],y0,yp0);
plot(t,y)
end
function hell2 = odennotfunatall(~,y,yp)
m1=1; m2=1; m3=1; l1=1; l2=1;
l3=1; g=9.81; tau1=0; tau2=0; tau3=0; I1=0; I2=0; I3=0;
hell2=zeros(6,1);
hell2(1)=yp(1)*(I1+(m1+m2+m3)*l1^2)...
+yp(2)*(m2+m3)*l1*l2*cos(y(1)-y(2))+...
yp(3)*m3*l1*l3*cos(y(1)-y(3))-y(4);
hell2(2)=yp(1)*(m2+m3)*l1*l2*cos(y(1)-y(2))+...
yp(2)*(I2+(m2+m3)*l2^2)+...
yp(3)*m3*l2*l3*cos(y(2)-y(3))-y(5);
hell2(3)=yp(1)*m3*l1*l3*cos(y(1)-y(3))+...
yp(2)*m3*l2*l3*cos(y(2)-y(3))+...
yp(3)*(I3+m3*l3^2)-y(6);
hell2(4)=-yp(4)+tau1-tau2-(m2+m3)*yp(1)*yp(2)*sin(y(1)-y(2))...
-m3*yp(1)*yp(3)*l1*l3*sin(y(1)-y(3))...
-(m1+m2+m3)*g*l1*cos(y(1));
hell2(5)=-yp(5)+tau2-tau3+(m2+m3)*yp(1)*yp(2)*l1*l2*sin(y(1)-y(2))...
-m3*yp(2)*yp(3)*l2*l3*sin(y(2)-y(3))...
-(m2+m3)*g*l2*cos(y(2));
hell2(6)=-yp(6)+tau3+(m3)*yp(1)*yp(3)*l1*l3*sin(y(1)-y(3))...
+m3*yp(2)*yp(3)*l2*l3*sin(y(2)-y(3))...
-m3*g*l3*cos(y(3));
end
Plus de réponses (1)
madhan ravi
le 3 Jan 2019
Just follow the same way showed in your previous question?
3 commentaires
madhan ravi
le 3 Jan 2019
No problem , please recheck your equations take your time there are only four equations whereas you have 6 equations in your code.
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!