Does anybody have details about how Matlab does its 2-D 'spline' interpolation?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I didn't find details about how Matlab computes its 'spline' interpolation in interp2. Apparently, it uses many points (Roughly a square of 60 points are needed to obtain exactly the same interpolation as for the whole plan when I tried for an example implying a huge matrix of random numbers (see example below) (and it's probably only a precision limit)). (I understood that 'linear' uses 4 points, 'cubic' 16) Does anyone know how Matlab procedes (I don't think they give any reference or anything about their method...)
MATLAB CODE
X=ones(1000*2,1)*(1:500);
Y=((((1-round(1000/2)):1000+...
(1000-round(1000/2))))')*ones(1,500);
Z=rand(2000,500);
rt=59.5
Hum3=interp2(X,Y,Z,rt,rt,'spline')
for kj=1:floor(rt-1)
if isequal(interp2(X((500+floor(rt)-kj):(500+ceil(rt)+kj),(floor(rt)-kj):(floor(rt)+kj)),...
Y((500+floor(rt)-kj):(500+ceil(rt)+kj),(floor(rt)-kj):(floor(rt)+kj)),...
Z((500+floor(rt)-kj):(500+ceil(rt)+kj),(floor(rt)-kj):(floor(rt)+kj)),rt,rt,'spline'),Hum3)
disp(kj)
break
end
end
5 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Spline Postprocessing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!