Forward Euler solution plotting
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I am trying to solve the differential equation dx/dy=x-y from x=0 to 1.5 using the forward euler method with step sizes 0.25, 0.05, and 0.01. I want to plot the approximations of all three step sizes on one plot, with the exact solution y=(x+1)-(1/3)e^x as well. I have the first approximation and plot with step size 0.25 in the code below. I was thinking I would use an array of step sizes where h=[0.25 0.05 0.01] and N=[6 30 150] but it's not working. How should I go about this?
h=0.25; % step size
N=6; % number of steps
y(1)=2/3; % Initial condition
for n=1:N
x(n+1)=n*h
y(n+1)= y(n)+h*(y(n)-x(n)) % FWD Euler solved for y(n+1)
end
plot(x,y)
0 commentaires
Réponses (1)
Torsten
le 14 Jan 2019
Modifié(e) : Torsten
le 14 Jan 2019
function main
x0 = 0.0;
x1 = 1.5;
fun = @(x,y) y-x;
h = [0.25 0.05 0.01];
for i = 1:numel(h)
[x{i},y{i}] = euler(fun,x0,x1,h(i));
end
plot(x{1},y{1},x{2},y{2},x{3},y{3})
end
function [x,y] = euler(fun,x0,x1,h)
x(1) = x0;
y(1) = 2.0/3.0;
N = (x1-x0)/h;
for i=2:N+1
y(i) = y(i-1) + h*fun(x(i-1),y(i-1));
x(i) = x(i-1) + h;
end
end
0 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!