Min objective and function evaluations
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
As I was learning to optimize regression tree, I'm struggling to understand some of the codes and graphs generated in the matlab example ' Optimize Regression Tree'
load carsmall
X = [Weight,Horsepower];
Y = MPG;
rng default
Mdl = fitrtree(X,Y,'OptimizeHyperparameters','auto',...
'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...
'expected-improvement-plus'))
As you can see from the above code, they set the 'OptimizeHyperparameters' to 'auto', they struct 'AcquisitionFunctionName' to 'expected-improvement-plus', they also put 'HyperparameterOptimizationOptions' in the bracket.
My first question is that i'm not familiar with all the parameters I could put here, is there a list of those parameters out there for me to familiarize with all the properties I could put in the bracket?
Once you type the above code, the outputs are two graphs shown below.
My second question is that in the first graph, what does 'Min objective' mean? What does 'Number of function Evaluations' mean?
0 commentaires
Réponses (1)
Don Mathis
le 16 Jan 2019
Question 1: https://www.mathworks.com/help/stats/fitrtree.html#bt6cr84_sep_shared-HyperparameterOptimizationOptions
Question 2: As mentioned in the link for Question 1, it's using the 'bayesopt' function. Start here: https://www.mathworks.com/help/stats/bayesopt.html
0 commentaires
Voir également
Catégories
En savoir plus sur Model Building and Assessment dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!