Why are there Topic Concentration Iterations when you disable fitting topic concentration in fitlda?

4 vues (au cours des 30 derniers jours)
When I run fitlda with 'FitTopicConcentration' set to false, I still get `Topic Concentration Interatons'.
For example:
mdl = fitlda(bag,numTopics,'Verbose',1,'InitialTopicConcentration',50,'FitTopicConcentration',false,'LogLikelihoodTolerance',0,'IterationLimit',20);
gets:
Initial topic assignments sampled in 1.44622 seconds.
=====================================================================
| Iteration | Time per | Relative | Training | Topic |
| | iteration | change in | perplexity | concentration |
| | (seconds) | log(L) | | iterations |
=====================================================================
| 0 | 0.90 | | 6.715e+02 | 0 |
| 1 | 1.79 | 3.3759e-02 | 5.429e+02 | 0 |
| 2 | 1.70 | 1.2228e-02 | 5.031e+02 | 0 |
| 3 | 1.58 | 2.1513e-03 | 4.965e+02 | 0 |
| 4 | 1.57 | 6.2666e-04 | 4.945e+02 | 0 |
| 5 | 1.55 | 3.3881e-04 | 4.935e+02 | 0 |
| 6 | 1.60 | 2.5182e-04 | 4.927e+02 | 0 |
| 7 | 1.55 | 1.5109e-04 | 4.923e+02 | 0 |
| 8 | 1.62 | 2.2085e-04 | 4.916e+02 | 0 |
| 9 | 1.64 | 2.1745e-04 | 4.909e+02 | 0 |
| 10 | 1.66 | 1.0178e-04 | 4.906e+02 | 0 |
| 11 | 1.86 | 1.1432e-04 | 4.903e+02 | 4 |
| 12 | 1.79 | 6.5833e-04 | 4.883e+02 | 3 |
| 13 | 1.77 | 4.3774e-04 | 4.870e+02 | 3 |
| 14 | 1.70 | 4.8030e-04 | 4.855e+02 | 3 |
| 15 | 1.73 | 4.1302e-04 | 4.843e+02 | 3 |
| 16 | 1.69 | 1.9747e-04 | 4.837e+02 | 3 |
| 17 | 1.73 | 2.5513e-04 | 4.829e+02 | 3 |
| 18 | 1.83 | 2.4952e-04 | 4.822e+02 | 3 |
| 19 | 1.63 | 9.3627e-05 | 4.819e+02 | 2 |
| 20 | 1.66 | 1.0886e-04 | 4.816e+02 | 2 |
=====================================================================
Why is the rightmost column not all zeros? What does "topic concentration iterations" mean?
  1 commentaire
Stephen Bruestle
Stephen Bruestle le 17 Jan 2019
Note, when I run:
mdl = fitlda(bag,numTopics,'Verbose',1,'InitialTopicConcentration',50,'FitTopicConcentration',true,'LogLikelihoodTolerance',0,'IterationLimit',20);
I get:
Initial topic assignments sampled in 1.31452 seconds.
=====================================================================================
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
=====================================================================================
| 0 | 0.59 | | 6.715e+02 | 50.000 | 0 |
| 1 | 1.59 | 3.2014e-02 | 5.487e+02 | 50.000 | 0 |
| 2 | 1.57 | 1.1809e-02 | 5.098e+02 | 50.000 | 0 |
| 3 | 1.57 | 2.9063e-03 | 5.006e+02 | 50.000 | 0 |
| 4 | 1.68 | 7.4965e-04 | 4.983e+02 | 50.000 | 0 |
| 5 | 1.55 | 4.2984e-04 | 4.970e+02 | 50.000 | 0 |
| 6 | 1.61 | 2.2000e-04 | 4.963e+02 | 50.000 | 0 |
| 7 | 1.57 | 1.3672e-04 | 4.959e+02 | 50.000 | 0 |
| 8 | 1.55 | 3.0094e-04 | 4.950e+02 | 50.000 | 0 |
| 9 | 1.47 | 1.7135e-04 | 4.944e+02 | 50.000 | 0 |
| 10 | 1.53 | 1.9109e-04 | 4.939e+02 | 50.000 | 0 |
| 11 | 3.51 | 5.6307e-05 | 4.937e+02 | 8.503 | 47 |
| 12 | 2.40 | 4.8823e-02 | 3.699e+02 | 6.363 | 22 |
| 13 | 2.05 | 7.0746e-03 | 3.548e+02 | 6.023 | 13 |
| 14 | 2.01 | 1.7874e-03 | 3.511e+02 | 5.897 | 9 |
| 15 | 2.43 | 1.2725e-03 | 3.485e+02 | 5.775 | 9 |
| 16 | 1.89 | 1.2613e-03 | 3.460e+02 | 5.625 | 10 |
| 17 | 1.88 | 1.1882e-03 | 3.436e+02 | 5.512 | 9 |
| 18 | 1.90 | 1.2557e-03 | 3.411e+02 | 5.387 | 9 |
| 19 | 1.89 | 9.4163e-04 | 3.392e+02 | 5.307 | 7 |
| 20 | 1.94 | 8.2492e-04 | 3.376e+02 | 5.217 | 8 |
=====================================================================================

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by