UPDATE: I have found a user made function that takes a 3d matrix and visualizes it. Which solved my problem instantly. The function is vis3d if anyone wants to take glimpse.
How to plot a 3D vector field
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello. I am trying to plot the magnetic flux density of a permanent magnet around its viscinity. the magnetic flux density at any point in space (x,y,z) has 3 components, Bx,By and Bz, where all of them are functions of x,y and z. My duty is to plot these vector fields. I have the equations written down but I couldn't gain any progress on plotting. In the end, the vector field should look like the iconic magnetic field lines of a magnet. Here is the code and the equations. Thanks for your help.
syms x y z
a = 1; %dimensions of the permanent magnet
b = 1;
c = 0.5;
Nu0 = 1.25e-6; %(m.kg)/(s^2.A^2) permeability of free space
M = 1; %tesla
F_1xyz = atan(((x+a)*(y+b)) / ((z+c)*sqrt((x+a)^2+(y+b)^2+(z+c)^2))); %F1(x,y,z)
F_1xxyz = atan(((-x+a)*(y+b)) / ((z+c)*sqrt((-x+a)^2+(y+b)^2+(z+c)^2))); %F1(-x,y,z)
F_1xxyzz = atan(((-x+a)*(y+b)) / ((-z+c)*sqrt((-x+a)^2+(y+b)^2+(-z+c)^2))); %F1(-x,y,-z)
F_1xxyyz = atan(((-x+a)*(-y+b)) / ((z+c)*sqrt((-x+a)^2+(-y+b)^2+(z+c)^2))); %F1(-x,-y,z)
F_1xxyyzz = atan(((-x+a)*(-y+b)) / ((-z+c)*sqrt((-x+a)^2+(-y+b)^2+(-z+c)^2))); %F1(-x,-y,-z)
F_1xyzz = atan(((x+a)*(y+b)) / ((-z+c)*sqrt((x+a)^2+(y+b)^2+(-z+c)^2))); %F1(x,y,-z)
F_1xyyz = atan(((x+a)*(-y+b)) / ((z+c)*sqrt((x+a)^2+(-y+b)^2+(z+c)^2))); %F1(x,-y,z)
F_1xyyzz = atan(((x+a)*(-y+b)) / ((-z+c)*sqrt((x+a)^2+(-y+b)^2+(-z+c)^2))); %F1(x,-y,-z)
F_2xyz = (sqrt((x+a)^2+(y-b)^2+(z+c)^2)+b-y) / (sqrt((x+a)^2+(y+b)^2+(z+c)^2)-b-y); %F2(x,y,z)
F_2xxyzz = (sqrt((-x+a)^2+(y-b)^2+(-z+c)^2)+b-y) / (sqrt((-x+a)^2+(y+b)^2+(-z+c)^2)-b-y);%F2(-x,y,-z)
F_2xyzz = (sqrt((x+a)^2+(y-b)^2+(-z+c)^2)+b-y) / (sqrt((x+a)^2+(y+b)^2+(-z+c)^2)-b-y); %F2(x,y,-z)
F_2xxyz = (sqrt((-x+a)^2+(y-b)^2+(z+c)^2)+b-y) / (sqrt((-x+a)^2+(y+b)^2+(z+c)^2)-b-y); %F2(-x,y,z)
F_2yyxzz = (sqrt((-y+a)^2+(x-b)^2+(-z+c)^2)+b-x) / (sqrt((-y+a)^2+(x+b)^2+(-z+c)^2)-b-x); %F2(-y,x,-z)
F_2yxz = (sqrt((y+a)^2+(x-b)^2+(z+c)^2)+b-x) / (sqrt((y+a)^2+(x+b)^2+(z+c)^2)-b-x); %F2(y,x,z)
F_2yxzz = (sqrt((y+a)^2+(x-b)^2+(-z+c)^2)+b-x) / (sqrt((y+a)^2+(x+b)^2+(-z+c)^2)-b-x); %F2(y,x,-z)
F_2yyxz = (sqrt((-y+a)^2+(x-b)^2+(z+c)^2)+b-x) / (sqrt((-y+a)^2+(x+b)^2+(z+c)^2)-b-x); %F2(-y,x,z)
Bx = ((Nu0*M)/(4*pi))*log((F_2xxyzz*F_2xyz)/(F_2xyzz*F_2xxyz)); %x component of the magnetic flux density vector at point (x,y,z)
By = ((Nu0*M)/(4*pi))*log((F_2yyxzz*F_2yxz)/(F_2yxzz*F_2yyxz)); %y component of the magnetic flux density vector at point (x,y,z)
Bz = -((Nu0*M)/(4*pi))*(F_1xxyz + F_1xxyzz + F_1xxyyz + F_1xxyyzz + F_1xyz + F_1xyzz + F_1xyyz + F_1xyyzz ); %z component of the magnetic flux density vector at point (x,y,z)
0 commentaires
Réponse acceptée
Ege Keskin
le 3 Fév 2019
3 commentaires
prachi jain
le 20 Juin 2019
Hello Kenneth,
Did you find the answer to your question?
I am doing a similar thing for my research. Please share if you were successful.
-Prachi
Plus de réponses (2)
KSSV
le 31 Jan 2019
YOu need to define the values of (x,y,z) sibstiutue these values in Bx, By Bz using subs and then use quiver3.
3 commentaires
Voir également
Catégories
En savoir plus sur Number Theory dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!