Bayesopt result is "No feasible points were found." in classifier optimization

3 vues (au cours des 30 derniers jours)
Hello everyone,
I need to tune a random forest in a classification task and I am following this guide from matlab documentation that does the same but for regression.
I modified the code to optimize a classifier, but I I'm struggling in understanding why bayesopt can't find any feasible point. This is an example of what I get:
|=====================================================================================================|
| Iter | Eval | Objective | Objective | BestSoFar | BestSoFar | minLS | numPTS |
| | result | | runtime | (observed) | (estim.) | | |
|=====================================================================================================|
| 1 | Error | NaN | 0.19415 | NaN | NaN | 20 | 3 |
| 2 | Error | NaN | 0.20093 | NaN | NaN | 2 | 1 |
| 3 | Error | NaN | 0.2076 | NaN | NaN | 2 | 4 |
| 4 | Error | NaN | 0.19925 | NaN | NaN | 17 | 6 |
| 5 | Error | NaN | 0.19505 | NaN | NaN | 13 | 2 |
__________________________________________________________
Optimization completed.
MaxObjectiveEvaluations of 5 reached.
Total function evaluations: 5
Total elapsed time: 1.7825 seconds.
Total objective function evaluation time: 0.99699
No feasible points were found.
I also add my code in case it could be helpful:
function bestHyperparameters = RF(trainingData,predictorNames)
rng('default'); % For reproducibility
% Extract predictors and response
inputTable = trainingData;
predictors = inputTable(:, predictorNames);
response = inputTable.Class;
% Set hyperparameters
maxMinLS = 20;
minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer');
numPTS = optimizableVariable('numPTS',[1,size(predictors,2)-1],'Type','integer');
hyperparametersRF = [minLS; numPTS];
% obj. function
function oobErr = oobErrRFM(params,X,response)
randomForest = TreeBagger(30,X,response,'Method','classification',...
'OOBPrediction','on','MinLeafSize',params.minLS,...
'NumPredictorstoSample',params.numPTS);
oobErr = oobError(randomForest);
end
% Optimization
results = bayesopt(@(params)oobErrRFM(params,predictors,response),hyperparametersRF,...
'Verbose',1,'MaxObjectiveEvaluations',5);
bestOOBErr = results.MinObjective;
bestHyperparameters = results.XAtMinObjective;
end
I hope someone can help me! Thank you in advance,
Marta
  1 commentaire
Stephan
Stephan le 2 Fév 2019
remove your comment and make an answer to this question instead. then accept your answer. this way people know the issue is solved successfully.

Connectez-vous pour commenter.

Réponse acceptée

marta prati
marta prati le 2 Fév 2019
After posting the question, I found the error...
If it could be helpful to someone, the code works just by replacing oobErr = oobError(randomForest) with oobErr = oobError(randomForest, 'Mode','ensemble').
Cheers!

Plus de réponses (0)

Produits


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by