Info
Cette question est clôturée. Rouvrir pour modifier ou répondre.
convert my code ; Plot using ode function
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
% Constants
beta=5;
alfa = 2.*beta/(beta+1);
tau1=4.4;
tau2=5;
Tc=0.20;
gamma=alfa.*(2-exp(-tau1));
% Time frames
t1=0:0.01:tau1;
t11 = tau1:0.01:8;
t2 = tau1:0.01:tau2;
t22 = tau2:0.01:8;
t3 = tau2:0.01:8;
% Part A
EeA = @(t) -alfa .*exp(-t./Tc) + alfa;
EeA1 = EeA(t1);
EeA2 = EeA(t11);
plot(t1,EeA1,'-b',t11,EeA2,'--c','lineWidth',2)
Now, I wish to do it with a ode function; I tried the below but unsuccessful ; I get error- Error in solve_E (line 13)
function dEdt = simple_ode(t,E)
dEdt = @(t) -alfa .*exp(-t./Tc) + alfa;
end
function solve_E
initial_E = 0;
time_range = [0, 4.4];
%% Constants
beta=5;
alfa = 2.*beta/(beta+1);
tau1=4.4;
tau2=5;
Tc=0.20;
gamma=alfa.*(2-exp(-tau1));
[t_values, E_values]= ode15s(@(t,E) simple_ode(t,E),time_range,initial_E);
plot(t_values,E_values);
end
0 commentaires
Réponses (1)
Stephan
le 4 Fév 2019
Hi,
try:
solve_E
function solve_E
initial_E = 0;
time_range = [0, 4.4];
% Constants
beta=5;
alfa = 2.*beta/(beta+1);
tau1=4.4;
tau2=5;
Tc=0.20;
gamma=alfa.*(2-exp(-tau1));
[t_values, E_values]= ode15s(@simple_ode,time_range,initial_E);
plot(t_values,E_values);
function dEdt = simple_ode(t,~)
dEdt = -alfa .*exp(-t./Tc) + alfa;
end
end
gamma and tau2 are not needed in this code, they are unused.
Best regards
Stephan
6 commentaires
Stephan
le 5 Fév 2019
Calculate the analytic derivates of your functions. If you have access to Symbolic Toolbox, you can use this to calculate the derivatives and then you can create a function that is suitable for ode solvers.
Cette question est clôturée.
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!