Class with static variables in parallel global optimization algorithm

4 vues (au cours des 30 derniers jours)
Omar Kamel
Omar Kamel le 8 Fév 2019
Modifié(e) : Matt J le 21 Mar 2019
Hello,
I have a global optimization program dealing with large matrices (several gigabytes of data), so in order to save memory, a class with static variables was implemented similar to the implementation in Static Data, and then one object of this class is created, initialized and passed as an argument to a function handle acting as the objective function of global multistage optimization algorithm (Particle Swarm + Pattern Search). When parallelization in optimoptions is true:
optimoptions( ...
'UseParallel', true);
The optimization always yields false results, but when parallelization is turned off, it works correctly.
Thanks in advance!

Réponses (2)

Matt J
Matt J le 8 Fév 2019
Modifié(e) : Matt J le 8 Fév 2019
All variables are cloned when parallelization is used. Each parallel worker operates with an independent copy of any variable sent to it.
  5 commentaires
Matt J
Matt J le 8 Fév 2019
Okay, but we also need to see how it is used in the optimization.
Omar Kamel
Omar Kamel le 14 Fév 2019
Modifié(e) : Omar Kamel le 14 Fév 2019
Sorry for the late reply.
%create object and initialize
dampingModelDataObject = cDampingConstData; %create object of type cDampingConstData
dampingModelDataObject.setget_delta_A_to_delta_d(delta_A_to_delta_d); %initialize object with fields
dampingModelDataObject.setget_A_0_0(A_0_0); %initialize object with fields
dampingModelDataObject.setget_states_num(A_0_0); %initialize object with fields
%objective function handler, object is passed to it with another constant inputs and d as variable
fun = @(d) DampIT.SumModalDamping_sparse_oo(reshape(d,1,1,num_damping_coefficients), dampingModelDataObject,targetModalDamping);
%optimization options
options = optimoptions('particleswarm', 'Display', 'iter', ...
'HybridFcn', {@patternsearch, patternsearch_hybrid_options}, ... %hybrid optimization
'MaxTime', obj.settings.pp_swarm_maxTime, ...
'MaxIterations', obj.settings.pp_swarm_maxIter, ...
'FunctionTolerance', obj.settings.pp_swarm_tolFun, ...
'PlotFcn', { @pswplotbestf}, ...
'SwarmSize', obj.settings.pp_swarm_swarmSize, ...
'OutputFcn', memLog_swarm, ...
'UseParallel', useparallel_flag, ... %true
'UseVectorized', false, ...
'MaxStallIterations', obj.settings.pp_swarm_maxStallIter, ...
'InitialSwarmMatrix', InitialSwarmMatrix);
%problem settings
problem.solver = 'particleswarm';
problem.objective = fun;
problem.nvars = num_damping_coefficients;
problem.lb = x_start;
problem.ub = x_end;
problem.options = options;
%start optimization
[d_optimized, fval, exitflag, output] = particleswarm(problem);

Connectez-vous pour commenter.


Walter Roberson
Walter Roberson le 14 Fév 2019
Look again at the link you provided . Notice the point about static data not being saved with an object . The process of sending variables to parallel workers involves save and load.
  3 commentaires
Walter Roberson
Walter Roberson le 21 Mar 2019
However, that saves the matrix once per worker, not "only 1 time in the memory". If you strictly need "only 1 time in the memory" then you should look in the File Exchange for https://www.mathworks.com/matlabcentral/fileexchange/28572-sharedmatrix which uses operating system shared memory.
Matt J
Matt J le 21 Mar 2019
Modifié(e) : Matt J le 21 Mar 2019
Interesting.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Surrogate Optimization dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by