Coding taylor approximation of natural log
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi all,
I need to approximate ln(1.9) using a taylor series ln(1-x)=Sum(-(x^k)/k,k,1,inf). I have to code a script to figure out 1) how many terms I need, 2) the value from the series, and 3) the error. Here is what I have so far. I tried to run it, but it seems to be not ending.
x=0.9;
target_equation = log(1-x);
series_sum = 0;
difference = abs(target_equation - series_sum);
threshold = 1*10^-10;
count = 0;
while difference > threshold;
count=count+1;
series_sum=series_sum + ((x^count)/count);
difference = abs(target_equation - series_sum);
end
disp(series_sum);
I'm not sure what is wrong with my code. Any suggestion?
0 commentaires
Réponses (1)
RAMAKANT SHAKYA
le 11 Fév 2019
if you want to calculate log(1.9) and x=0.9 then you have apply taylor series log(1+x) see formula form google and change in to the code is
function series_sum=talor(x) %give x=0.9 as input
target_equation = log(1+x); % for calculating log(1.9)
series_sum = 0;
difference = abs(target_equation - series_sum);
threshold = 1*10^-10;
count = 0;
while difference > threshold;
count=count+1;
series_sum=series_sum + ((-1)^(count+1)*(x^count)/count); %as per formula of taylor series the even term cofficients are negative
difference = abs(target_equation - series_sum);
end
disp(series_sum);
Voir également
Catégories
En savoir plus sur Mathematics and Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!