Evaluating a complex integral

9 vues (au cours des 30 derniers jours)
Michael Devereux
Michael Devereux le 14 Fév 2019
Hello I'm trying to integrate the following function in MATLAB
but it's returing the wrong answer when I try something like
This is what I have tried so far:
fun = @(t,x,y) exp(1i.*(t.^4+x.*t.^2+y.*t));
P = @(x,y) integral(@(t)fun(t,x,y),-Inf,Inf);
P(1,1)
Any help appreciated and many thanks in advance
  3 commentaires
Torsten
Torsten le 15 Fév 2019
exp(i*(t^4+x*t^2+y*t)) does not tend to 0 as | t| -> Inf. Thus your integral does not exist (at least in the usual sense).
Michael Devereux
Michael Devereux le 15 Fév 2019
According to WolframAlpha the answer is 1.20759 + 0.601534 i
Keep in mind it's a complex exponential so there is a finite solution. This is know as the Pearcey Integral. I am more concerned that I have entered the formula incorrectly than the actual integral itself. Is this the correct way to approach the problem.

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 15 Fév 2019
format long
fun = @(t,x,y) exp(-t.^4 + 1i.*y.*t - x.*t.^2 + 1i*pi*0.125);
P = @(x,y) integral(@(t)fun(t,x*exp(-1i*pi*0.25),y*exp(1i*pi*0.125)),-Inf,Inf);
P(1,1)
Reference:
https://arxiv.org/pdf/1601.03615.pdf
  1 commentaire
Michael Devereux
Michael Devereux le 15 Fév 2019
Many thanks!

Connectez-vous pour commenter.

Plus de réponses (1)

Abhishek Hullur
Abhishek Hullur le 8 Août 2021
. Evaluate around the rectangle with vertices

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Tags

Produits


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by