In the above calcuation, I normalized X and Y to . The strange thing is that if there's no normalization of X and Y, regularized ELM can have similar result to the ELM.
Imprecision problem: pinv(H) is not equal to pinv(H'*H)*H'
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm testing the function with single hidden layer feedforward neural networks (SLFNs) with 20 neurons, by extreme machine learning (ELM).
With a SLFN, in the output layer, the output weight(OW) can be described by
after adding regularized parameter γ(regularized ELM), which
with
.
But when I try to calculate and , I find a huge difference between these two when neurons number is over 5 (under 5, they are equal or almost the same).
For example, when H is `10*10` matrix, , ,
H= [0.736251410036783 0.499731137079796 0.450233920602169 0.296610970576716 0.369359425954153 0.505556211442208 0.502934880027889 0.364904559142718 0.253349959726753 0.298697900877265;
0.724064281864009 0.521667364351399 0.435944895257239 0.337878535128756 0.364906002569385 0.496504064726699 0.492798607017131 0.390656915261343 0.289981152837390 0.307212326718916;
0.711534656474153 0.543520341487420 0.421761457948049 0.381771374416867 0.360475582262355 0.487454209236671 0.482668250979627 0.417033287703137 0.329570921359082 0.315860145366824;
0.698672860220896 0.565207057974387 0.407705930918082 0.427683127210120 0.356068794706095 0.478412571446765 0.472552121296395 0.443893207685379 0.371735862991355 0.324637323886021;
0.685491077062637 0.586647027111176 0.393799811411985 0.474875155650945 0.351686254239637 0.469385056318048 0.462458480695760 0.471085139463084 0.415948455902421 0.333539494486324;
0.672003357663056 0.607763454504209 0.380063647372632 0.522520267708374 0.347328559602877 0.460377531907542 0.452395518357816 0.498449772544129 0.461556360076788 0.342561958147251;
0.658225608290477 0.628484290731116 0.366516925684188 0.569759064961507 0.342996293691614 0.451395814182317 0.442371323528726 0.525823695636816 0.507817005881821 0.351699689941632;
0.644175558300583 0.648743139215935 0.353177974096445 0.615761051907079 0.338690023332811 0.442445652121229 0.432393859824045 0.553043275759248 0.553944175102542 0.360947346089454;
0.629872705346690 0.668479997764613 0.340063877672496 0.659781468051379 0.334410299080102 0.433532713184646 0.422470940392161 0.579948548513999 0.599160649563718 0.370299272759337;
0.615338237874436 0.687641820315375 0.327190410302607 0.701205860709835 0.330157655029498 0.424662569229062 0.412610204098877 0.606386924575225 0.642749594844498 0.379749516620049];
T=[-0.806458764562879 -0.251682808380338 -0.834815868451399 -0.750626822371170 0.877733363571576 1 -0.626938984683970 -0.767558933097629 -0.921811074815239 -1]';
There is a huge difference between and , where
OW1= [-19780274164.6438 -3619388884.32672 -76363206688.3469 16455234.9229156 -135982025652.153 -93890161354.8417 283696409214.039 193801203.735488 -18829106.6110445 19064848675.0189]'.
OW2 = [-4803.39093243484 3567.08623820149 668.037919243849 5975.10699147077 1709.31211566970 -1328.53407325092 -1844.57938928594 -22511.9388736373 -2377.63048959478 31688.5125271114]';
I also find that if I round H , , and return the same answer. So I guess one of the reason might be the float calculation issue inside the matlab.
But since is large, any small change of H may result in large difference in the inverse of H. I think the function may not be a good option to test. With large ,the numerical imprecision will affect the accuracy of inverse.
Back to my question, in my test, I use 1000 training samples , with noise between , and test samples are noise free. 20 neurons are selected. The can give reasonable results for training, while the performance for is worse. Then I try to increase the precision of by , there's no improvement.
One more comment, when I limit the , can return the reasonable result, and highest accuracy when .
Does anyone know how to solve this?
1 commentaire
Réponse acceptée
Plus de réponses (2)
Matt J
le 19 Fév 2019
Seems to me the obvious solution is not to push gamma to infinity. That removes the regularization whose purpose is precisely to avoid the numerical ill-conditioning you describe.
4 commentaires
BERGHOUT Tarek
le 20 Fév 2019
in ELM you should alwayes scale your inputs batween (-1,1) fro both versions, do that and let me know about the results
Voir également
Catégories
En savoir plus sur Biological and Health Sciences dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!