Plotting a multivariable function
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Akshay Pratap Singh
le 20 Fév 2019
Commenté : Akshay Pratap Singh
le 20 Fév 2019
I wrote a code for plotting a mutivariable function but getting error like "Error using fplot (line 136)
Invalid parameter '0 ...'.
Error in SFDBMDNLK (line 83)
fplot(SF,x,SF1,x).
How can I resolve it?
code:
clear all
clc
format longEng
syms y1 y2 x
phi=(pi/180)*39;
delta=(pi/180)*26;
gma=18.4;
h=4;
h1=1.91;
h2=0.088;
L=h+h1+h2;
q=0;
beta=1;
alfa=1;
Ra1=-1;
Ra2=-(alfa*(y2))^0.5;
Rp1=3*(beta*(1-y1))^0.5;
Rp2=3*(alfa*(y2))^0.5;
delma1=0.5*(1-Ra1)*delta;
delma2=-0.5*(1-Ra2)*delta;
delmp1=0.5*(Rp1-1)*delta;
delmp2=0.5*(Rp2-1)*delta;
ka1=(2*cos(phi)^2)/(cos(phi)^2*(1+Ra1)+cos(delma1)*(1-Ra1)*(1+sqrt((sin(phi+delma1)*sin(phi))/cos(delma1)))^2);
ka2=(2*cos(phi)^2)/(cos(phi)^2*(1+Ra2)+cos(delma2)*(1-Ra2)*(1+sqrt((sin(phi+delma2)*sin(phi))/cos(delma2)))^2);
kp1=1+0.5*(Rp1-1)*((cos(phi)^2/(cos(delmp1)*(-sqrt((sin(phi+delmp1)*sin(phi))/cos(delmp1))+1)^2))-1);
kp2=1+0.5*(Rp2-1)*((cos(phi)^2/(cos(delmp2)*(-sqrt((sin(phi+delmp2)*sin(phi))/cos(delmp2))+1)^2))-1);
fup1=matlabFunction(kp1*y1*cos(delmp1));
Final_result_p1=gma*(x-h)^2*integral(fup1,0,1);
M21=matlabFunction(kp1*cos(delmp1)*y1);
Final_result_m21=gma*h1*(x-h)^2*integral(M21,0,1);
M22=matlabFunction(kp1*cos(delmp1)*y1^2);
Final_result_m22=gma*(x-h)^3*integral(M22,0,1);
Final_result_m2=Final_result_m21+Final_result_m22;
Hfup1=matlabFunction(kp1*y1*cos(delmp1));
HFinal_result_p1=gma*h1^2*integral(Hfup1,0,1);
T31=matlabFunction(kp2*cos(delmp2));
HFinal_result_T31=gma*(h+h1)*(x-h-h1)*integral(T31,0,1);
T32=matlabFunction(ka2*cos(delma2));
HFinal_result_T32=gma*h1*(x-h-h1)*integral(T32,0,1);
T33=matlabFunction(kp2*cos(delmp2)*y2-ka2*cos(delma2)*y2);
HFinal_result_T33=gma*(x-h-h1)^2*integral(T33,0,1);
T3=HFinal_result_T31+HFinal_result_T32+HFinal_result_T33;
M21=matlabFunction(kp1*cos(delmp1)*y1);
Result_M21=gma*h1*(x-h)^2*integral(M21,0,1);
M22=matlabFunction(kp1*cos(delmp1)*y1^2);
Result_M22=gma*(x-h)^3*integral(M22,0,1);
M23=matlabFunction(kp1*y1*cos(delmp1));
Result_M23=gma*(x-h-h1)*(x-h)^2*integral(M23,0,1);
M31=matlabFunction(kp2*cos(delmp2)*y2);
Result_M31=gma*(h+h1)*0.5*(x-h-h1)^2*integral(M31,0,1);
M32=matlabFunction(ka2*cos(delma2)*y2);
Result_M32=gma*h1*0.5*(x-h-h1)^2*integral(M32,0,1);
M3=Result_M31-Result_M32;
M4=matlabFunction((kp2*cos(delmp2)-ka2*cos(delma2))*y2*(1-y2));
Result_M4=gma*(x-h-h1)^3*integral(M4,0,1);
MT1=-0.5*ka1*gma*x^2*cos(delma1);
MM1=-(1/6)*ka1*gma*x^3*cos(delma1);
MT2=-0.5*ka1*gma*x^2*cos(delma1);
MM2=-(1/6)*ka1*gma*x^3*cos(delma1);
i=0;
for x=0:0.02:L
i=i+1;
if(x<h)
SF(i)=MT1;
SF1(i)=0;
BM(i)=MM1;
BM1(i)=0;
elseif(x>=h && x<(h+h1))
SF(i)=MT2+Final_result_p1;
SF1(i)=0;
BM(i)=MM2+Final_result_m2;
BM1(i)=0;
else
SF(i)=-0.5*ka1*gma*(h+h1)^2*cos(delma1) + HFinal_result_p1 - T3;
SF1(i)=0;
BM(i)=-0.5*ka1*gma*(h+h1)^2*(((h+h1)/3)+(x-h-h1))*cos(delma1)+ M3 - Result_M4; %0.5*kp1*gma*h1^2*((h1/3)+(x-h-h1))*cos(delmp1)-0.5*gma*(x-h-h1)^2*(kp2*(h+h1)*cos(delmp2)-ka2*h1*cos(delma2))-(1/6)*(kp2*cos(delmp2)-ka2*cos(delma2))*(x-h-h1)^3;
BM1(i)=0;
end
end
x=0:0.02:L;
subplot(2,1,1);
fplot(SF,x,SF1,x)
xlabel('Length of the beam in m')
ylabel('Shear Force in KN')
title('Shear force diagram')
col_header={'x',SF};
xlswrite('data.xlsx',[x(:),SF(:)],'Sheet1','A2');
xlswrite('data.xlsx',col_header,'Sheet1','A1');
subplot(2,1,2)
fplot(BM,x,BM1,x)
xlabel('Length of the beam in m')
ylabel('Bending Moment in KN-m')
title('Bending Moment diagram')
col_header={'x',BM};
xlswrite('data.xlsx',[x(:),BM(:)],'Sheet1','A2');
xlswrite('data.xlsx',col_header,'Sheet1','A1');
1 commentaire
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur MuPAD dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!