Brain Tumor Segmentation using K-Means Clustering?How to Resolve the following error using Matlab 2017a and How i can declare the Guifcn function over this code?

12 vues (au cours des 30 derniers jours)
%%%Matlab Code for K Means Segmentation
function varargout = guifinal(varargin)
% GUIFINAL M-file for guifinal.fig
% GUIFINAL, by itself, creates a new GUIFINAL or raises the existing
% singleton*.
%
% H = GUIFINAL returns the handle to a new GUIFINAL or the handle to
% the existing singleton*.
%
% GUIFINAL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GUIFINAL.M with the given input arguments.
%
% GUIFINAL('Property','Value',...) creates a new GUIFINAL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before guifinal_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to guifinal_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help guifinal
% Last Modified by GUIDE v2.5 25-Sep-2006 12:53:17
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @guifinal_OpeningFcn, ...
'gui_OutputFcn', @guifinal_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin & isstr(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before guifinal is made visible.
function guifinal_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to guifinal (see VARARGIN)
% Choose default command line output for guifinal
handles.output = hObject;
a=ones(256,256);
axes(handles.one);
imshow(a);
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes guifinal wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = guifinal_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in Browse.
function Browse_Callback(hObject, eventdata, handles)
% hObject handle to Browse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename, pathname] = uigetfile('*.bmp', 'Pick an Image');
if isequal(filename,0) | isequal(pathname,0)
warndlg('User pressed cancel')
else
a=imread(filename);
axes(handles.one);
imshow(a);
handles.file=filename;
% Update handles structure
guidata(hObject, handles);
end
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
bb=get(handles.e1,'String');
bb=str2num(bb);
filename = handles.file;
if bb == 3
wd=256;
Input = imread(filename);
% imshow(Input);
figure;
Input =rgb2gray(Input);
Input =double(Input);
[r c] = size(Input);
Length = r*c;
Dataset = reshape(Input,[Length,1]);
Clusters=3 %k CLUSTERS
% Cluster1=[];
% Cluster2=[];
% Cluster3=[];
% Cluster4=[];
% Cluster5=[];
Cluster1=zeros(Length,1);
Cluster2=zeros(Length,1);
Cluster3=zeros(Length,1);
% Cluster4=zeros(Length,1);
% Cluster5=zeros(Length,1);
% Initial Centroids
% ARBITARLY CHOOSE K OBJECTS AS INITIAL CENTROIDS
miniv = min(min(Input));
maxiv = max(max(Input));
range = maxiv - miniv;
stepv = range/Clusters;
incrval = stepv;
for i = 1:Clusters
K(i).centroid = incrval;
incrval = incrval + stepv;
end
%BEGIN LOOP
% L=1;
update1=0;
update2=0;
update3=0;
update4=0;
update5=0;
mean1=2;
mean2=2;
mean3=2;
mean4=2;
mean5=2;
while ((mean1 ~= update1) & (mean2 ~= update2) & (mean3 ~= update3) )
mean1=K(1).centroid;
mean2=K(2).centroid;
mean3=K(3).centroid;
% mean4=K(4).centroid;
% mean5=K(5).centroid;
for i=1:Length
for j = 1:Clusters
temp= Dataset(i);
difference(j) = abs(temp-K(j).centroid);
end
[y,ind]=min(difference);
if ind==1
Cluster1(i) =temp;
end
if ind==2
Cluster2(i) =temp;
end
if ind==3
Cluster3(i) =temp;
end
% if ind==4
% Cluster4(i) =temp;
% end
% if ind==5
% Cluster5(i) =temp;
% end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%UPDATE CENTROIDS
cout1=0;
cout2=0;
cout3=0;
cout4=0;
cout5=0;
for i=1:Length
Load1=Cluster1(i);
Load2=Cluster2(i);
Load3=Cluster3(i);
% Load4=Cluster4(i);
% Load5=Cluster5(i);
if Load1 ~= 0
cout1=cout1+1;
end
if Load2 ~= 0
cout2=cout2+1;
end
%
if Load3 ~= 0
cout3=cout3+1;
end
% if Load4 ~= 0
% cout4=cout4+1;
% end
%
% if Load5 ~= 0
% cout5=cout5+1;
% end
end
% find the new mean of centroids
% Mean_Cluster(1)=sum(Cluster1)/Length;
% Mean_Cluster(2)=sum(Cluster2)/Length;
% Mean_Cluster(3)=sum(Cluster3)/Length;
% Mean_Cluster(4)=sum(Cluster4)/Length;
% Mean_Cluster(5)=sum(Cluster5)/Length;
Mean_Cluster(1)=sum(Cluster1)/cout1;
Mean_Cluster(2)=sum(Cluster2)/cout2;
Mean_Cluster(3)=sum(Cluster3)/cout3;
% Mean_Cluster(4)=sum(Cluster4)/cout4;
% Mean_Cluster(5)=sum(Cluster5)/cout5;
%reload
for i = 1:Clusters
K(i).centroid = Mean_Cluster(i);
end
update1=K(1).centroid;
update2=K(2).centroid;
update3=K(3).centroid;
% update4=K(4).centroid;
% update5=K(5).centroid;
end
AA1=reshape(Cluster1,[wd wd]);
AA2=reshape(Cluster2,[wd wd]);
AA3=reshape(Cluster3,[wd wd]);
% AA4=reshape(Cluster4,[wd wd]);
% AA5=reshape(Cluster5,[wd wd]);
subplot(1,3,1);imshow(AA1,[]);
%figure;
subplot(1,3,2);imshow(AA2,[]);
%figure;
subplot(1,3,3);imshow(AA3,[]);
% figure;
% imshow(AA4,[]);
% figure;
% imshow(AA5,[]);
elseif bb == 4
wd=256;
Input = imread(filename);
imshow(Input);
figure;
Input =rgb2gray(Input);
Input =double(Input);
[r c] = size(Input);
Length = r*c;
Dataset = reshape(Input,[Length,1]);
Clusters=4 %k CLUSTERS
% Cluster1=[];
% Cluster2=[];
% Cluster3=[];
% Cluster4=[];
% Cluster5=[];
Cluster1=zeros(Length,1);
Cluster2=zeros(Length,1);
Cluster3=zeros(Length,1);
Cluster4=zeros(Length,1);
% Cluster5=zeros(Length,1);
% Initial Centroids
% ARBITARLY CHOOSE K OBJECTS AS INITIAL CENTROIDS
miniv = min(min(Input));
maxiv = max(max(Input));
range = maxiv - miniv;
stepv = range/Clusters;
incrval = stepv;
for i = 1:Clusters
K(i).centroid = incrval;
incrval = incrval + stepv;
end
%BEGIN LOOP
% L=1;
update1=0;
update2=0;
update3=0;
update4=0;
update5=0;
mean1=2;
mean2=2;
mean3=2;
mean4=2;
mean5=2;
while ((mean1 ~= update1) & (mean2 ~= update2) & (mean3 ~= update3) & (mean4 ~= update4))
mean1=K(1).centroid;
mean2=K(2).centroid;
mean3=K(3).centroid;
mean4=K(4).centroid;
% mean5=K(5).centroid;
for i=1:Length
for j = 1:Clusters
temp= Dataset(i);
difference(j) = abs(temp-K(j).centroid);
end
[y,ind]=min(difference);
if ind==1
Cluster1(i) =temp;
end
if ind==2
Cluster2(i) =temp;
end
if ind==3
Cluster3(i) =temp;
end
if ind==4
Cluster4(i) =temp;
end
% if ind==5
% Cluster5(i) =temp;
% end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%UPDATE CENTROIDS
cout1=0;
cout2=0;
cout3=0;
cout4=0;
cout5=0;
for i=1:Length
Load1=Cluster1(i);
Load2=Cluster2(i);
Load3=Cluster3(i);
Load4=Cluster4(i);
% Load5=Cluster5(i);
if Load1 ~= 0
cout1=cout1+1;
end
if Load2 ~= 0
cout2=cout2+1;
end
%
if Load3 ~= 0
cout3=cout3+1;
end
if Load4 ~= 0
cout4=cout4+1;
end
%
% if Load5 ~= 0
% cout5=cout5+1;
% end
end
% find the new mean of centroids
% Mean_Cluster(1)=sum(Cluster1)/Length;
% Mean_Cluster(2)=sum(Cluster2)/Length;
% Mean_Cluster(3)=sum(Cluster3)/Length;
% Mean_Cluster(4)=sum(Cluster4)/Length;
% Mean_Cluster(5)=sum(Cluster5)/Length;
Mean_Cluster(1)=sum(Cluster1)/cout1;
Mean_Cluster(2)=sum(Cluster2)/cout2;
Mean_Cluster(3)=sum(Cluster3)/cout3;
Mean_Cluster(4)=sum(Cluster4)/cout4;
% Mean_Cluster(5)=sum(Cluster5)/cout5;
%reload
for i = 1:Clusters
K(i).centroid = Mean_Cluster(i);
end
update1=K(1).centroid;
update2=K(2).centroid;
update3=K(3).centroid;
update4=K(4).centroid;
% update5=K(5).centroid;
end
AA1=reshape(Cluster1,[wd wd]);
AA2=reshape(Cluster2,[wd wd]);
AA3=reshape(Cluster3,[wd wd]);
AA4=reshape(Cluster4,[wd wd]);
% AA5=reshape(Cluster5,[wd wd]);
subplot(2,2,1);imshow(AA1,[]);
%figure;
subplot(2,2,2);imshow(AA2,[]);
%figure;
subplot(2,2,3);imshow(AA3,[]);
%figure;
subplot(2,2,4);imshow(AA4,[]);
% figure;
% imshow(AA5,[]);
elseif bb== 5
% % number of clusters k and dataset containing n objects
% clc;
% clear;
% close all;
wd=256;
Input = imread(filename);
% imshow(Input);
figure;
Input =rgb2gray(Input);
Input =double(Input);
[r c] = size(Input);
Length = r*c;
Dataset = reshape(Input,[Length,1]);
Clusters=5 %k CLUSTERS
% Cluster1=[];
% Cluster2=[];
% Cluster3=[];
% Cluster4=[];
% Cluster5=[];
Cluster1=zeros(Length,1);
Cluster2=zeros(Length,1);
Cluster3=zeros(Length,1);
Cluster4=zeros(Length,1);
Cluster5=zeros(Length,1);
% Initial Centroids
% ARBITARLY CHOOSE K OBJECTS AS INITIAL CENTROIDS
miniv = min(min(Input));
maxiv = max(max(Input));
range = maxiv - miniv;
stepv = range/Clusters;
incrval = stepv;
for i = 1:Clusters
K(i).centroid = incrval;
incrval = incrval + stepv;
end
%BEGIN LOOP
% L=1;
update1=0;
update2=0;
update3=0;
update4=0;
update5=0;
mean1=2;
mean2=2;
mean3=2;
mean4=2;
mean5=2;
while ((mean1 ~= update1) & (mean2 ~= update2) & (mean3 ~= update3) & (mean4 ~= update4) & (mean5 ~= update5))
mean1=K(1).centroid;
mean2=K(2).centroid;
mean3=K(3).centroid;
mean4=K(4).centroid;
mean5=K(5).centroid;
for i=1:Length
for j = 1:Clusters
temp= Dataset(i);
difference(j) = abs(temp-K(j).centroid);
end
[y,ind]=min(difference);
if ind==1
Cluster1(i) =temp;
end
if ind==2
Cluster2(i) =temp;
end
if ind==3
Cluster3(i) =temp;
end
if ind==4
Cluster4(i) =temp;
end
if ind==5
Cluster5(i) =temp;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%UPDATE CENTROIDS
cout1=0;
cout2=0;
cout3=0;
cout4=0;
cout5=0;
for i=1:Length
Load1=Cluster1(i);
Load2=Cluster2(i);
Load3=Cluster3(i);
Load4=Cluster4(i);
Load5=Cluster5(i);
if Load1 ~= 0
cout1=cout1+1;
end
if Load2 ~= 0
cout2=cout2+1;
end
%
if Load3 ~= 0
cout3=cout3+1;
end
if Load4 ~= 0
cout4=cout4+1;
end
if Load5 ~= 0
cout5=cout5+1;
end
end
% find the new mean of centroids
% Mean_Cluster(1)=sum(Cluster1)/Length;
% Mean_Cluster(2)=sum(Cluster2)/Length;
% Mean_Cluster(3)=sum(Cluster3)/Length;
% Mean_Cluster(4)=sum(Cluster4)/Length;
% Mean_Cluster(5)=sum(Cluster5)/Length;
Mean_Cluster(1)=sum(Cluster1)/cout1;
Mean_Cluster(2)=sum(Cluster2)/cout2;
Mean_Cluster(3)=sum(Cluster3)/cout3;
Mean_Cluster(4)=sum(Cluster4)/cout4;
Mean_Cluster(5)=sum(Cluster5)/cout5;
%reload
for i = 1:Clusters
K(i).centroid = Mean_Cluster(i);
end
update1=K(1).centroid;
update2=K(2).centroid;
update3=K(3).centroid;
update4=K(4).centroid;
update5=K(5).centroid;
end
AA1=reshape(Cluster1,[wd wd]);
AA2=reshape(Cluster2,[wd wd]);
AA3=reshape(Cluster3,[wd wd]);
AA4=reshape(Cluster4,[wd wd]);
AA5=reshape(Cluster5,[wd wd]);
subplot(3,2,1);imshow(AA1,[]);
% figure;
subplot(3,2,2);imshow(AA2,[]);
% figure;
subplot(3,2,3);imshow(AA3,[]);
% figure;
subplot(3,2,4);imshow(AA4,[]);
% figure;
subplot(3,2,5);imshow(AA5,[]);
else
helpdlg('The no of cluster should be 3,4 or 5');
end
%
function e1_Callback(hObject, eventdata, handles)
% hObject handle to e1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of e1 as text
% str2double(get(hObject,'String')) returns contents of e1 as a double
%%Error Occured%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in gui_mainfcn (line 158)
gui_hFigure = local_openfig(gui_State.gui_Name, gui_SingletonOpt, gui_Visible);
Error in K_Means_NN (line 43)
gui_mainfcn(gui_State, varargin{:});

Réponse acceptée

Image Analyst
Image Analyst le 23 Fév 2019
Well for one thing, you don't say what the actual error IS. You just say
%%Error Occured%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in gui_mainfcn (line 158)
gui_hFigure = local_openfig(gui_State.gui_Name, gui_SingletonOpt, gui_Visible);
Error in K_Means_NN (line 43)
gui_mainfcn(gui_State, varargin{:});
Well that could be anything. But we can't set a breakpoint at that line because you didn't attach your m-file and fig-file and any needed other m-files or images with the paper clip icon.
In the meantime, see my attached kmeans tumor segmentation demo.
0000 Screenshot.png
  2 commentaires
Isabella Chiurillo
Isabella Chiurillo le 15 Avr 2020
How do you do create the outline and overlay on the tumor?
Image Analyst
Image Analyst le 15 Avr 2020
Outline created with plot(). Solid, transparent red-tinted overlay created with this code:
% Make a truecolor all-red RGB image. Red plane has the tumor and the green and blue planes are black.
redOverlay = cat(3, ones(size(binaryTumorImage)), zeros(size(binaryTumorImage)), zeros(size(binaryTumorImage)));
hRedImage = imshow(redOverlay); % Save the handle; we'll need it later.
hold off;
axis on;
% Now the tumor image "covers up" the gray scale image.
% We need to set the transparency of the red overlay image to be 30% opaque (70% transparent).
alpha_data = 0.3 * double(binaryTumorImage);
set(hRedImage, 'AlphaData', alpha_data);

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by