Normalizing a sparse matrix so that rows sum to 1
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ulrik William Nash
le 26 Fév 2019
Modifié(e) : Ulrik William Nash
le 26 Fév 2019
I have the following sparse matrix, which relates to a markov process. The parts of the matrix have been assembled sequentially, adding new entries to row, column, and probability one at a time, and only then creating
S = sparse(row,column,probability)
Because the sequential process involves aggregating probabilities from some states that are equaivalent
full(S)
results in a matrix, whose rows sum to more than one. What I wish to achieve is a normalization of each row in S, such that all rows sum to one. How can that be done by operating on S without needing to create the full matrix?
0 commentaires
Réponse acceptée
John D'Errico
le 26 Fév 2019
Modifié(e) : John D'Errico
le 26 Fév 2019
WTP?
M = sprand(10000,10000,.00001);
mean(sum(M,2))
ans =
(1,1) 0.050375
So M is large, sparse, and its rows sum to whatever they want to sum to.
M = M./sum(M,2);
[min(sum(M,2)),max(sum(M,2))]
ans =
(1,1) 1
(1,2) 1
So now normalized. The above will work properly in R2016b or later. I could have done the normalization by multiplying by a sparse diagonal matrix too, probably created using spdiags.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sparse Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!